Docling/docling/models/easyocr_model.py
Christoph Auer 7d3302cb48
feat: Make Page.parsed_page the only source of truth for text cells, add OCR cells to it (#1745)
* Keep page.parsed_page.textline_cells and page.cells in sync, including OCR

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Make page.parsed_page the only source of truth for text cells

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Small fix

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Correctly compute PDF boxes from pymupdf

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Use different OCR engine order

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Add type hints and fix mypy

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* One more test fix

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Remove with pypdfium2_lock from caller sites

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Fix typing

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

---------

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>
2025-06-13 19:01:55 +02:00

191 lines
7.2 KiB
Python

import logging
import warnings
import zipfile
from collections.abc import Iterable
from pathlib import Path
from typing import List, Optional, Type
import numpy
from docling_core.types.doc import BoundingBox, CoordOrigin
from docling_core.types.doc.page import BoundingRectangle, TextCell
from docling.datamodel.accelerator_options import AcceleratorDevice, AcceleratorOptions
from docling.datamodel.base_models import Page
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import (
EasyOcrOptions,
OcrOptions,
)
from docling.datamodel.settings import settings
from docling.models.base_ocr_model import BaseOcrModel
from docling.utils.accelerator_utils import decide_device
from docling.utils.profiling import TimeRecorder
from docling.utils.utils import download_url_with_progress
_log = logging.getLogger(__name__)
class EasyOcrModel(BaseOcrModel):
_model_repo_folder = "EasyOcr"
def __init__(
self,
enabled: bool,
artifacts_path: Optional[Path],
options: EasyOcrOptions,
accelerator_options: AcceleratorOptions,
):
super().__init__(
enabled=enabled,
artifacts_path=artifacts_path,
options=options,
accelerator_options=accelerator_options,
)
self.options: EasyOcrOptions
self.scale = 3 # multiplier for 72 dpi == 216 dpi.
if self.enabled:
try:
import easyocr
except ImportError:
raise ImportError(
"EasyOCR is not installed. Please install it via `pip install easyocr` to use this OCR engine. "
"Alternatively, Docling has support for other OCR engines. See the documentation."
)
if self.options.use_gpu is None:
device = decide_device(accelerator_options.device)
# Enable easyocr GPU if running on CUDA, MPS
use_gpu = any(
device.startswith(x)
for x in [
AcceleratorDevice.CUDA.value,
AcceleratorDevice.MPS.value,
]
)
else:
warnings.warn(
"Deprecated field. Better to set the `accelerator_options.device` in `pipeline_options`. "
"When `use_gpu and accelerator_options.device == AcceleratorDevice.CUDA` the GPU is used "
"to run EasyOCR. Otherwise, EasyOCR runs in CPU."
)
use_gpu = self.options.use_gpu
download_enabled = self.options.download_enabled
model_storage_directory = self.options.model_storage_directory
if artifacts_path is not None and model_storage_directory is None:
download_enabled = False
model_storage_directory = str(artifacts_path / self._model_repo_folder)
self.reader = easyocr.Reader(
lang_list=self.options.lang,
gpu=use_gpu,
model_storage_directory=model_storage_directory,
recog_network=self.options.recog_network,
download_enabled=download_enabled,
verbose=False,
)
@staticmethod
def download_models(
detection_models: List[str] = ["craft"],
recognition_models: List[str] = ["english_g2", "latin_g2"],
local_dir: Optional[Path] = None,
force: bool = False,
progress: bool = False,
) -> Path:
# Models are located in https://github.com/JaidedAI/EasyOCR/blob/master/easyocr/config.py
from easyocr.config import (
detection_models as det_models_dict,
recognition_models as rec_models_dict,
)
if local_dir is None:
local_dir = settings.cache_dir / "models" / EasyOcrModel._model_repo_folder
local_dir.mkdir(parents=True, exist_ok=True)
# Collect models to download
download_list = []
for model_name in detection_models:
if model_name in det_models_dict:
download_list.append(det_models_dict[model_name])
for model_name in recognition_models:
if model_name in rec_models_dict["gen2"]:
download_list.append(rec_models_dict["gen2"][model_name])
# Download models
for model_details in download_list:
buf = download_url_with_progress(model_details["url"], progress=progress)
with zipfile.ZipFile(buf, "r") as zip_ref:
zip_ref.extractall(local_dir)
return local_dir
def __call__(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]:
if not self.enabled:
yield from page_batch
return
for page in page_batch:
assert page._backend is not None
if not page._backend.is_valid():
yield page
else:
with TimeRecorder(conv_res, "ocr"):
ocr_rects = self.get_ocr_rects(page)
all_ocr_cells = []
for ocr_rect in ocr_rects:
# Skip zero area boxes
if ocr_rect.area() == 0:
continue
high_res_image = page._backend.get_page_image(
scale=self.scale, cropbox=ocr_rect
)
im = numpy.array(high_res_image)
result = self.reader.readtext(im)
del high_res_image
del im
cells = [
TextCell(
index=ix,
text=line[1],
orig=line[1],
from_ocr=True,
confidence=line[2],
rect=BoundingRectangle.from_bounding_box(
BoundingBox.from_tuple(
coord=(
(line[0][0][0] / self.scale) + ocr_rect.l,
(line[0][0][1] / self.scale) + ocr_rect.t,
(line[0][2][0] / self.scale) + ocr_rect.l,
(line[0][2][1] / self.scale) + ocr_rect.t,
),
origin=CoordOrigin.TOPLEFT,
)
),
)
for ix, line in enumerate(result)
if line[2] >= self.options.confidence_threshold
]
all_ocr_cells.extend(cells)
# Post-process the cells
self.post_process_cells(all_ocr_cells, page)
# DEBUG code:
if settings.debug.visualize_ocr:
self.draw_ocr_rects_and_cells(conv_res, page, ocr_rects)
yield page
@classmethod
def get_options_type(cls) -> Type[OcrOptions]:
return EasyOcrOptions