Docling/docling/cli/main.py
nuridol 6efa96c983
feat: add support for ocrmac OCR engine on macOS (#276)
* feat: add support for `ocrmac` OCR engine on macOS

- Integrates `ocrmac` as an OCR engine option for macOS users.
- Adds configuration options and dependencies for `ocrmac`.
- Updates documentation to reflect new engine support.

This change allows macOS users to utilize `ocrmac` for improved OCR performance and compatibility.

Signed-off-by: Suhwan Seo <nuridol@gmail.com>

* updated the poetry lock

Signed-off-by: Suhwan Seo <nuridol@gmail.com>

* Fix linting issues, update CLI docs, and add error for ocrmac use on non-Mac systems

- Resolved formatting and linting issues
- Updated `--ocr-engine` CLI option documentation for `ocrmac`
- Added RuntimeError for attempts to use `ocrmac` on non-Mac platforms

Signed-off-by: Suhwan Seo <nuridol@gmail.com>

* feat: add support for `ocrmac` OCR engine on macOS

- Integrates `ocrmac` as an OCR engine option for macOS users.
- Adds configuration options and dependencies for `ocrmac`.
- Updates documentation to reflect new engine support.

This change allows macOS users to utilize `ocrmac` for improved OCR performance and compatibility.

Signed-off-by: Suhwan Seo <nuridol@gmail.com>

* docs: update examples and installation for ocrmac support

- Added `OcrMacOptions` to `custom_convert.py` and `full_page_ocr.py` examples.
- Included usage comments and examples for `OcrMacOptions` in OCR pipelines.
- Updated installation guide to include instructions for installing `ocrmac`, noting macOS version requirements (10.15+).
- Highlighted that `ocrmac` leverages Apple's Vision framework as an OCR backend.

This enhances documentation for users working on macOS to leverage `ocrmac` effectively.

Signed-off-by: Suhwan Seo <nuridol@gmail.com>

* fix: update `ocrmac` dependency with macOS-specific marker

- Added `sys_platform == 'darwin'` marker to the `ocrmac` dependency in `pyproject.toml` to specify macOS compatibility.
- Updated the content hash in `poetry.lock` to reflect the changes.

This ensures the `ocrmac` dependency is only installed on macOS systems.

Signed-off-by: Suhwan Seo <nuridol@gmail.com>

---------

Signed-off-by: Suhwan Seo <nuridol@gmail.com>
Co-authored-by: Suhwan Seo <nuridol@gmail.com>
2024-11-20 12:51:19 +01:00

330 lines
10 KiB
Python

import importlib
import json
import logging
import re
import time
import warnings
from enum import Enum
from pathlib import Path
from typing import Annotated, Dict, Iterable, List, Optional, Type
import typer
from docling_core.utils.file import resolve_file_source
from docling.backend.docling_parse_backend import DoclingParseDocumentBackend
from docling.backend.docling_parse_v2_backend import DoclingParseV2DocumentBackend
from docling.backend.pdf_backend import PdfDocumentBackend
from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend
from docling.datamodel.base_models import (
ConversionStatus,
FormatToExtensions,
InputFormat,
OutputFormat,
)
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import (
EasyOcrOptions,
OcrMacOptions,
OcrOptions,
PdfPipelineOptions,
TableFormerMode,
TesseractCliOcrOptions,
TesseractOcrOptions,
)
from docling.document_converter import DocumentConverter, FormatOption, PdfFormatOption
warnings.filterwarnings(action="ignore", category=UserWarning, module="pydantic|torch")
warnings.filterwarnings(action="ignore", category=FutureWarning, module="easyocr")
_log = logging.getLogger(__name__)
from rich.console import Console
err_console = Console(stderr=True)
app = typer.Typer(
name="Docling",
no_args_is_help=True,
add_completion=False,
pretty_exceptions_enable=False,
)
def version_callback(value: bool):
if value:
docling_version = importlib.metadata.version("docling")
docling_core_version = importlib.metadata.version("docling-core")
docling_ibm_models_version = importlib.metadata.version("docling-ibm-models")
docling_parse_version = importlib.metadata.version("docling-parse")
print(f"Docling version: {docling_version}")
print(f"Docling Core version: {docling_core_version}")
print(f"Docling IBM Models version: {docling_ibm_models_version}")
print(f"Docling Parse version: {docling_parse_version}")
raise typer.Exit()
# Define an enum for the backend options
class PdfBackend(str, Enum):
PYPDFIUM2 = "pypdfium2"
DLPARSE_V1 = "dlparse_v1"
DLPARSE_V2 = "dlparse_v2"
# Define an enum for the ocr engines
class OcrEngine(str, Enum):
EASYOCR = "easyocr"
TESSERACT_CLI = "tesseract_cli"
TESSERACT = "tesseract"
OCRMAC = "ocrmac"
def export_documents(
conv_results: Iterable[ConversionResult],
output_dir: Path,
export_json: bool,
export_md: bool,
export_txt: bool,
export_doctags: bool,
):
success_count = 0
failure_count = 0
for conv_res in conv_results:
if conv_res.status == ConversionStatus.SUCCESS:
success_count += 1
doc_filename = conv_res.input.file.stem
# Export Deep Search document JSON format:
if export_json:
fname = output_dir / f"{doc_filename}.json"
with fname.open("w", encoding="utf8") as fp:
_log.info(f"writing JSON output to {fname}")
fp.write(json.dumps(conv_res.document.export_to_dict()))
# Export Text format:
if export_txt:
fname = output_dir / f"{doc_filename}.txt"
with fname.open("w", encoding="utf8") as fp:
_log.info(f"writing Text output to {fname}")
fp.write(conv_res.document.export_to_markdown(strict_text=True))
# Export Markdown format:
if export_md:
fname = output_dir / f"{doc_filename}.md"
with fname.open("w", encoding="utf8") as fp:
_log.info(f"writing Markdown output to {fname}")
fp.write(conv_res.document.export_to_markdown())
# Export Document Tags format:
if export_doctags:
fname = output_dir / f"{doc_filename}.doctags"
with fname.open("w", encoding="utf8") as fp:
_log.info(f"writing Doc Tags output to {fname}")
fp.write(conv_res.document.export_to_document_tokens())
else:
_log.warning(f"Document {conv_res.input.file} failed to convert.")
failure_count += 1
_log.info(
f"Processed {success_count + failure_count} docs, of which {failure_count} failed"
)
def _split_list(raw: Optional[str]) -> Optional[List[str]]:
if raw is None:
return None
return re.split(r"[;,]", raw)
@app.command(no_args_is_help=True)
def convert(
input_sources: Annotated[
List[str],
typer.Argument(
...,
metavar="source",
help="PDF files to convert. Can be local file / directory paths or URL.",
),
],
from_formats: List[InputFormat] = typer.Option(
None,
"--from",
help="Specify input formats to convert from. Defaults to all formats.",
),
to_formats: List[OutputFormat] = typer.Option(
None, "--to", help="Specify output formats. Defaults to Markdown."
),
ocr: Annotated[
bool,
typer.Option(
..., help="If enabled, the bitmap content will be processed using OCR."
),
] = True,
force_ocr: Annotated[
bool,
typer.Option(
...,
help="Replace any existing text with OCR generated text over the full content.",
),
] = False,
ocr_engine: Annotated[
OcrEngine, typer.Option(..., help="The OCR engine to use.")
] = OcrEngine.EASYOCR,
ocr_lang: Annotated[
Optional[str],
typer.Option(
...,
help="Provide a comma-separated list of languages used by the OCR engine. Note that each OCR engine has different values for the language names.",
),
] = None,
pdf_backend: Annotated[
PdfBackend, typer.Option(..., help="The PDF backend to use.")
] = PdfBackend.DLPARSE_V1,
table_mode: Annotated[
TableFormerMode,
typer.Option(..., help="The mode to use in the table structure model."),
] = TableFormerMode.FAST,
artifacts_path: Annotated[
Optional[Path],
typer.Option(..., help="If provided, the location of the model artifacts."),
] = None,
abort_on_error: Annotated[
bool,
typer.Option(
...,
"--abort-on-error/--no-abort-on-error",
help="If enabled, the bitmap content will be processed using OCR.",
),
] = False,
output: Annotated[
Path, typer.Option(..., help="Output directory where results are saved.")
] = Path("."),
verbose: Annotated[
int,
typer.Option(
"--verbose",
"-v",
count=True,
help="Set the verbosity level. -v for info logging, -vv for debug logging.",
),
] = 0,
version: Annotated[
Optional[bool],
typer.Option(
"--version",
callback=version_callback,
is_eager=True,
help="Show version information.",
),
] = None,
):
if verbose == 0:
logging.basicConfig(level=logging.WARNING)
elif verbose == 1:
logging.basicConfig(level=logging.INFO)
elif verbose == 2:
logging.basicConfig(level=logging.DEBUG)
if from_formats is None:
from_formats = [e for e in InputFormat]
input_doc_paths: List[Path] = []
for src in input_sources:
source = resolve_file_source(source=src)
if not source.exists():
err_console.print(
f"[red]Error: The input file {source} does not exist.[/red]"
)
raise typer.Abort()
elif source.is_dir():
for fmt in from_formats:
for ext in FormatToExtensions[fmt]:
input_doc_paths.extend(list(source.glob(f"**/*.{ext}")))
input_doc_paths.extend(list(source.glob(f"**/*.{ext.upper()}")))
else:
input_doc_paths.append(source)
if to_formats is None:
to_formats = [OutputFormat.MARKDOWN]
export_json = OutputFormat.JSON in to_formats
export_md = OutputFormat.MARKDOWN in to_formats
export_txt = OutputFormat.TEXT in to_formats
export_doctags = OutputFormat.DOCTAGS in to_formats
match ocr_engine:
case OcrEngine.EASYOCR:
ocr_options: OcrOptions = EasyOcrOptions(force_full_page_ocr=force_ocr)
case OcrEngine.TESSERACT_CLI:
ocr_options = TesseractCliOcrOptions(force_full_page_ocr=force_ocr)
case OcrEngine.TESSERACT:
ocr_options = TesseractOcrOptions(force_full_page_ocr=force_ocr)
case OcrEngine.OCRMAC:
ocr_options = OcrMacOptions(force_full_page_ocr=force_ocr)
case _:
raise RuntimeError(f"Unexpected OCR engine type {ocr_engine}")
ocr_lang_list = _split_list(ocr_lang)
if ocr_lang_list is not None:
ocr_options.lang = ocr_lang_list
pipeline_options = PdfPipelineOptions(
do_ocr=ocr,
ocr_options=ocr_options,
do_table_structure=True,
)
pipeline_options.table_structure_options.do_cell_matching = True # do_cell_matching
pipeline_options.table_structure_options.mode = table_mode
if artifacts_path is not None:
pipeline_options.artifacts_path = artifacts_path
match pdf_backend:
case PdfBackend.DLPARSE_V1:
backend: Type[PdfDocumentBackend] = DoclingParseDocumentBackend
case PdfBackend.DLPARSE_V2:
backend = DoclingParseV2DocumentBackend
case PdfBackend.PYPDFIUM2:
backend = PyPdfiumDocumentBackend
case _:
raise RuntimeError(f"Unexpected PDF backend type {pdf_backend}")
format_options: Dict[InputFormat, FormatOption] = {
InputFormat.PDF: PdfFormatOption(
pipeline_options=pipeline_options,
backend=backend, # pdf_backend
)
}
doc_converter = DocumentConverter(
allowed_formats=from_formats,
format_options=format_options,
)
start_time = time.time()
conv_results = doc_converter.convert_all(
input_doc_paths, raises_on_error=abort_on_error
)
output.mkdir(parents=True, exist_ok=True)
export_documents(
conv_results,
output_dir=output,
export_json=export_json,
export_md=export_md,
export_txt=export_txt,
export_doctags=export_doctags,
)
end_time = time.time() - start_time
_log.info(f"All documents were converted in {end_time:.2f} seconds.")
click_app = typer.main.get_command(app)
if __name__ == "__main__":
app()