Docling/docling/document_converter.py
Michele Dolfi 63d80edca2
feat: output page images and extracted bbox (#31)
* Add assemble options and example saving pages and figures

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* add options for different page elements, improve example and flip name of assemble_options

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

---------

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2024-08-12 18:25:45 +02:00

273 lines
10 KiB
Python

import functools
import logging
import tempfile
import time
import traceback
from pathlib import Path
from typing import Iterable, Optional, Type, Union
import requests
from docling_core.types import Document
from PIL import ImageDraw
from pydantic import AnyHttpUrl, TypeAdapter, ValidationError
from docling.backend.abstract_backend import PdfDocumentBackend
from docling.datamodel.base_models import (
AssembledUnit,
AssembleOptions,
ConversionStatus,
Page,
PipelineOptions,
)
from docling.datamodel.document import (
ConvertedDocument,
DocumentConversionInput,
InputDocument,
)
from docling.datamodel.settings import settings
from docling.models.ds_glm_model import GlmModel
from docling.models.page_assemble_model import PageAssembleModel
from docling.pipeline.base_model_pipeline import BaseModelPipeline
from docling.pipeline.standard_model_pipeline import StandardModelPipeline
from docling.utils.utils import chunkify, create_hash
_log = logging.getLogger(__name__)
class DocumentConverter:
_layout_model_path = "model_artifacts/layout/beehive_v0.0.5"
_table_model_path = "model_artifacts/tableformer"
_default_download_filename = "file.pdf"
def __init__(
self,
artifacts_path: Optional[Union[Path, str]] = None,
pipeline_options: PipelineOptions = PipelineOptions(),
pdf_backend: Type[PdfDocumentBackend] = DocumentConversionInput.DEFAULT_BACKEND,
pipeline_cls: Type[BaseModelPipeline] = StandardModelPipeline,
assemble_options: AssembleOptions = AssembleOptions(),
):
if not artifacts_path:
artifacts_path = self.download_models_hf()
artifacts_path = Path(artifacts_path)
self.model_pipeline = pipeline_cls(
artifacts_path=artifacts_path, pipeline_options=pipeline_options
)
self.page_assemble_model = PageAssembleModel(config={})
self.glm_model = GlmModel(config={})
self.pdf_backend = pdf_backend
self.assemble_options = assemble_options
@staticmethod
def download_models_hf(
local_dir: Optional[Path] = None, force: bool = False
) -> Path:
from huggingface_hub import snapshot_download
download_path = snapshot_download(
repo_id="ds4sd/docling-models", force_download=force, local_dir=local_dir
)
return Path(download_path)
def convert(self, input: DocumentConversionInput) -> Iterable[ConvertedDocument]:
for input_batch in chunkify(
input.docs(pdf_backend=self.pdf_backend), settings.perf.doc_batch_size
):
_log.info(f"Going to convert document batch...")
# parallel processing only within input_batch
# with ThreadPoolExecutor(
# max_workers=settings.perf.doc_batch_concurrency
# ) as pool:
# yield from pool.map(self.process_document, input_batch)
# Note: Pdfium backend is not thread-safe, thread pool usage was disabled.
yield from map(self.process_document, input_batch)
def convert_single(self, source: Path | AnyHttpUrl | str) -> Document:
"""Convert a single document.
Args:
source (Path | AnyHttpUrl | str): The PDF input source. Can be a path or URL.
Raises:
ValueError: If source is of unexpected type.
RuntimeError: If conversion fails.
Returns:
Document: The converted document object.
"""
with tempfile.TemporaryDirectory() as temp_dir:
try:
http_url: AnyHttpUrl = TypeAdapter(AnyHttpUrl).validate_python(source)
res = requests.get(http_url, stream=True)
res.raise_for_status()
fname = None
# try to get filename from response header
if cont_disp := res.headers.get("Content-Disposition"):
for par in cont_disp.strip().split(";"):
# currently only handling directive "filename" (not "*filename")
if (split := par.split("=")) and split[0].strip() == "filename":
fname = "=".join(split[1:]).strip().strip("'\"") or None
break
# otherwise, use name from URL:
if fname is None:
fname = Path(http_url.path).name or self._default_download_filename
local_path = Path(temp_dir) / fname
with open(local_path, "wb") as f:
for chunk in res.iter_content(chunk_size=1024): # using 1-KB chunks
f.write(chunk)
except ValidationError:
try:
local_path = TypeAdapter(Path).validate_python(source)
except ValidationError:
raise ValueError(
f"Unexpected file path type encountered: {type(source)}"
)
conv_inp = DocumentConversionInput.from_paths(paths=[local_path])
converted_docs_iter = self.convert(conv_inp)
converted_doc: ConvertedDocument = next(converted_docs_iter)
if converted_doc.status not in {
ConversionStatus.SUCCESS,
ConversionStatus.SUCCESS_WITH_ERRORS,
}:
raise RuntimeError(f"Conversion failed with status: {converted_doc.status}")
doc = converted_doc.to_ds_document()
return doc
def process_document(self, in_doc: InputDocument) -> ConvertedDocument:
start_doc_time = time.time()
converted_doc = ConvertedDocument(input=in_doc)
if not in_doc.valid:
converted_doc.status = ConversionStatus.FAILURE
return converted_doc
for i in range(0, in_doc.page_count):
converted_doc.pages.append(Page(page_no=i))
all_assembled_pages = []
try:
# Iterate batches of pages (page_batch_size) in the doc
for page_batch in chunkify(
converted_doc.pages, settings.perf.page_batch_size
):
start_pb_time = time.time()
# Pipeline
# 1. Initialise the page resources
init_pages = map(
functools.partial(self.initialize_page, in_doc), page_batch
)
# 2. Populate page image
pages_with_images = map(
functools.partial(self.populate_page_images, in_doc), init_pages
)
# 3. Populate programmatic page cells
pages_with_cells = map(
functools.partial(self.parse_page_cells, in_doc),
pages_with_images,
)
# 4. Run pipeline stages
pipeline_pages = self.model_pipeline.apply(pages_with_cells)
# 5. Assemble page elements (per page)
assembled_pages = self.page_assemble_model(pipeline_pages)
# exhaust assembled_pages
for assembled_page in assembled_pages:
# Free up mem resources before moving on with next batch
# Remove page images (can be disabled)
if not self.assemble_options.keep_page_images:
assembled_page.image = (
None # Comment this if you want to visualize page images
)
# Unload backend
assembled_page._backend.unload()
all_assembled_pages.append(assembled_page)
end_pb_time = time.time() - start_pb_time
_log.info(f"Finished converting page batch time={end_pb_time:.3f}")
# Free up mem resources of PDF backend
in_doc._backend.unload()
converted_doc.pages = all_assembled_pages
self.assemble_doc(converted_doc)
converted_doc.status = ConversionStatus.SUCCESS
except Exception as e:
converted_doc.status = ConversionStatus.FAILURE
trace = "\n".join(traceback.format_exception(e))
_log.info(f"Encountered an error during conversion: {trace}")
end_doc_time = time.time() - start_doc_time
_log.info(
f"Finished converting document time-pages={end_doc_time:.2f}/{in_doc.page_count}"
)
return converted_doc
# Initialise and load resources for a page, before downstream steps (populate images, cells, ...)
def initialize_page(self, doc: InputDocument, page: Page) -> Page:
page._backend = doc._backend.load_page(page.page_no)
page.size = page._backend.get_size()
page.page_hash = create_hash(doc.document_hash + ":" + str(page.page_no))
return page
# Generate the page image and store it in the page object
def populate_page_images(self, doc: InputDocument, page: Page) -> Page:
page.image = page._backend.get_page_image()
return page
# Extract and populate the page cells and store it in the page object
def parse_page_cells(self, doc: InputDocument, page: Page) -> Page:
page.cells = page._backend.get_text_cells()
# DEBUG code:
def draw_text_boxes(image, cells):
draw = ImageDraw.Draw(image)
for c in cells:
x0, y0, x1, y1 = c.bbox.as_tuple()
draw.rectangle([(x0, y0), (x1, y1)], outline="red")
image.show()
# draw_text_boxes(page.image, cells)
return page
def assemble_doc(self, converted_doc: ConvertedDocument):
all_elements = []
all_headers = []
all_body = []
for p in converted_doc.pages:
for el in p.assembled.body:
all_body.append(el)
for el in p.assembled.headers:
all_headers.append(el)
for el in p.assembled.elements:
all_elements.append(el)
converted_doc.assembled = AssembledUnit(
elements=all_elements, headers=all_headers, body=all_body
)
converted_doc.output = self.glm_model(converted_doc)