
* Upgraded Layout Postprocessing, sending old code back to ERZ Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Implement hierachical cluster layout processing Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Pass nested cluster processing through full pipeline Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Pass nested clusters through GLM as payload Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Move to_docling_document from ds-glm to this repo Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Clean up imports again Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * feat(Accelerator): Introduce options to control the num_threads and device from API, envvars, CLI. - Introduce the AcceleratorOptions, AcceleratorDevice and use them to set the device where the models run. - Introduce the accelerator_utils with function to decide the device and resolve the AUTO setting. - Refactor the way how the docling-ibm-models are called to match the new init signature of models. - Translate the accelerator options to the specific inputs for third-party models. - Extend the docling CLI with parameters to set the num_threads and device. - Add new unit tests. - Write new example how to use the accelerator options. * fix: Improve the pydantic objects in the pipeline_options and imports. Signed-off-by: Nikos Livathinos <nli@zurich.ibm.com> * fix: TableStructureModel: Refactor the artifacts path to use the new structure for fast/accurate model Signed-off-by: Nikos Livathinos <nli@zurich.ibm.com> * Updated test ground-truth Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Updated test ground-truth (again), bugfix for empty layout Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * fix: Do proper check to set the device in EasyOCR, RapidOCR. Signed-off-by: Nikos Livathinos <nli@zurich.ibm.com> * fix: Correct the way to set GPU for EasyOCR, RapidOCR Signed-off-by: Nikos Livathinos <nli@zurich.ibm.com> * fix: Ocr AccleratorDevice Signed-off-by: Nikos Livathinos <nli@zurich.ibm.com> * Merge pull request #556 from DS4SD/cau/layout-processing-improvement feat: layout processing improvements and bugfixes * Update lockfile Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Update tests Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Update HF model ref, reset test generate Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Repin to release package versions Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Many layout processing improvements, add document index type Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Update pinnings to docling-core Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Update test GT Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Fix table box snapping Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Fixes for cluster pre-ordering Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Introduce OCR confidence, propagate to orphan in post-processing Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Fix form and key value area groups Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Adjust confidence in EasyOcr Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Roll back CLI changes from main Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Update test GT Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Update docling-core pinning Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Annoying fixes for historical python versions Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Updated test GT for legacy Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Comment cleanup Signed-off-by: Christoph Auer <cau@zurich.ibm.com> --------- Signed-off-by: Christoph Auer <cau@zurich.ibm.com> Signed-off-by: Nikos Livathinos <nli@zurich.ibm.com> Co-authored-by: Nikos Livathinos <nli@zurich.ibm.com>
329 lines
13 KiB
Python
329 lines
13 KiB
Python
import copy
|
|
import random
|
|
from pathlib import Path
|
|
from typing import List, Union
|
|
|
|
from deepsearch_glm.andromeda_nlp import nlp_model
|
|
from docling_core.types.doc import BoundingBox, CoordOrigin, DoclingDocument
|
|
from docling_core.types.legacy_doc.base import BoundingBox as DsBoundingBox
|
|
from docling_core.types.legacy_doc.base import (
|
|
Figure,
|
|
PageDimensions,
|
|
PageReference,
|
|
Prov,
|
|
Ref,
|
|
)
|
|
from docling_core.types.legacy_doc.base import Table as DsSchemaTable
|
|
from docling_core.types.legacy_doc.base import TableCell
|
|
from docling_core.types.legacy_doc.document import BaseText
|
|
from docling_core.types.legacy_doc.document import (
|
|
CCSDocumentDescription as DsDocumentDescription,
|
|
)
|
|
from docling_core.types.legacy_doc.document import CCSFileInfoObject as DsFileInfoObject
|
|
from docling_core.types.legacy_doc.document import ExportedCCSDocument as DsDocument
|
|
from PIL import ImageDraw
|
|
from pydantic import BaseModel, ConfigDict, TypeAdapter
|
|
|
|
from docling.datamodel.base_models import (
|
|
Cluster,
|
|
ContainerElement,
|
|
FigureElement,
|
|
Table,
|
|
TextElement,
|
|
)
|
|
from docling.datamodel.document import ConversionResult, layout_label_to_ds_type
|
|
from docling.datamodel.settings import settings
|
|
from docling.utils.glm_utils import to_docling_document
|
|
from docling.utils.profiling import ProfilingScope, TimeRecorder
|
|
from docling.utils.utils import create_hash
|
|
|
|
|
|
class GlmOptions(BaseModel):
|
|
model_config = ConfigDict(protected_namespaces=())
|
|
|
|
model_names: str = "" # e.g. "language;term;reference"
|
|
|
|
|
|
class GlmModel:
|
|
def __init__(self, options: GlmOptions):
|
|
self.options = options
|
|
|
|
self.model = nlp_model(loglevel="error", text_ordering=True)
|
|
|
|
def _to_legacy_document(self, conv_res) -> DsDocument:
|
|
title = ""
|
|
desc: DsDocumentDescription = DsDocumentDescription(logs=[])
|
|
|
|
page_hashes = [
|
|
PageReference(
|
|
hash=create_hash(conv_res.input.document_hash + ":" + str(p.page_no)),
|
|
page=p.page_no + 1,
|
|
model="default",
|
|
)
|
|
for p in conv_res.pages
|
|
]
|
|
|
|
file_info = DsFileInfoObject(
|
|
filename=conv_res.input.file.name,
|
|
document_hash=conv_res.input.document_hash,
|
|
num_pages=conv_res.input.page_count,
|
|
page_hashes=page_hashes,
|
|
)
|
|
|
|
main_text: List[Union[Ref, BaseText]] = []
|
|
tables: List[DsSchemaTable] = []
|
|
figures: List[Figure] = []
|
|
|
|
page_no_to_page = {p.page_no: p for p in conv_res.pages}
|
|
|
|
for element in conv_res.assembled.elements:
|
|
# Convert bboxes to lower-left origin.
|
|
target_bbox = DsBoundingBox(
|
|
element.cluster.bbox.to_bottom_left_origin(
|
|
page_no_to_page[element.page_no].size.height
|
|
).as_tuple()
|
|
)
|
|
|
|
if isinstance(element, TextElement):
|
|
main_text.append(
|
|
BaseText(
|
|
text=element.text,
|
|
obj_type=layout_label_to_ds_type.get(element.label),
|
|
name=element.label,
|
|
prov=[
|
|
Prov(
|
|
bbox=target_bbox,
|
|
page=element.page_no + 1,
|
|
span=[0, len(element.text)],
|
|
)
|
|
],
|
|
)
|
|
)
|
|
elif isinstance(element, Table):
|
|
index = len(tables)
|
|
ref_str = f"#/tables/{index}"
|
|
main_text.append(
|
|
Ref(
|
|
name=element.label,
|
|
obj_type=layout_label_to_ds_type.get(element.label),
|
|
ref=ref_str,
|
|
),
|
|
)
|
|
|
|
# Initialise empty table data grid (only empty cells)
|
|
table_data = [
|
|
[
|
|
TableCell(
|
|
text="",
|
|
# bbox=[0,0,0,0],
|
|
spans=[[i, j]],
|
|
obj_type="body",
|
|
)
|
|
for j in range(element.num_cols)
|
|
]
|
|
for i in range(element.num_rows)
|
|
]
|
|
|
|
# Overwrite cells in table data for which there is actual cell content.
|
|
for cell in element.table_cells:
|
|
for i in range(
|
|
min(cell.start_row_offset_idx, element.num_rows),
|
|
min(cell.end_row_offset_idx, element.num_rows),
|
|
):
|
|
for j in range(
|
|
min(cell.start_col_offset_idx, element.num_cols),
|
|
min(cell.end_col_offset_idx, element.num_cols),
|
|
):
|
|
celltype = "body"
|
|
if cell.column_header:
|
|
celltype = "col_header"
|
|
elif cell.row_header:
|
|
celltype = "row_header"
|
|
elif cell.row_section:
|
|
celltype = "row_section"
|
|
|
|
def make_spans(cell):
|
|
for rspan in range(
|
|
min(cell.start_row_offset_idx, element.num_rows),
|
|
min(cell.end_row_offset_idx, element.num_rows),
|
|
):
|
|
for cspan in range(
|
|
min(
|
|
cell.start_col_offset_idx, element.num_cols
|
|
),
|
|
min(cell.end_col_offset_idx, element.num_cols),
|
|
):
|
|
yield [rspan, cspan]
|
|
|
|
spans = list(make_spans(cell))
|
|
if cell.bbox is not None:
|
|
bbox = cell.bbox.to_bottom_left_origin(
|
|
page_no_to_page[element.page_no].size.height
|
|
).as_tuple()
|
|
else:
|
|
bbox = None
|
|
|
|
table_data[i][j] = TableCell(
|
|
text=cell.text,
|
|
bbox=bbox,
|
|
# col=j,
|
|
# row=i,
|
|
spans=spans,
|
|
obj_type=celltype,
|
|
# col_span=[cell.start_col_offset_idx, cell.end_col_offset_idx],
|
|
# row_span=[cell.start_row_offset_idx, cell.end_row_offset_idx]
|
|
)
|
|
|
|
tables.append(
|
|
DsSchemaTable(
|
|
num_cols=element.num_cols,
|
|
num_rows=element.num_rows,
|
|
obj_type=layout_label_to_ds_type.get(element.label),
|
|
data=table_data,
|
|
prov=[
|
|
Prov(
|
|
bbox=target_bbox,
|
|
page=element.page_no + 1,
|
|
span=[0, 0],
|
|
)
|
|
],
|
|
)
|
|
)
|
|
|
|
elif isinstance(element, FigureElement):
|
|
index = len(figures)
|
|
ref_str = f"#/figures/{index}"
|
|
main_text.append(
|
|
Ref(
|
|
name=element.label,
|
|
obj_type=layout_label_to_ds_type.get(element.label),
|
|
ref=ref_str,
|
|
),
|
|
)
|
|
figures.append(
|
|
Figure(
|
|
prov=[
|
|
Prov(
|
|
bbox=target_bbox,
|
|
page=element.page_no + 1,
|
|
span=[0, 0],
|
|
)
|
|
],
|
|
obj_type=layout_label_to_ds_type.get(element.label),
|
|
payload={
|
|
"children": TypeAdapter(List[Cluster]).dump_python(
|
|
element.cluster.children
|
|
)
|
|
}, # hack to channel child clusters through GLM
|
|
)
|
|
)
|
|
elif isinstance(element, ContainerElement):
|
|
main_text.append(
|
|
BaseText(
|
|
text="",
|
|
payload={
|
|
"children": TypeAdapter(List[Cluster]).dump_python(
|
|
element.cluster.children
|
|
)
|
|
}, # hack to channel child clusters through GLM
|
|
obj_type=layout_label_to_ds_type.get(element.label),
|
|
name=element.label,
|
|
prov=[
|
|
Prov(
|
|
bbox=target_bbox,
|
|
page=element.page_no + 1,
|
|
span=[0, 0],
|
|
)
|
|
],
|
|
)
|
|
)
|
|
|
|
page_dimensions = [
|
|
PageDimensions(page=p.page_no + 1, height=p.size.height, width=p.size.width)
|
|
for p in conv_res.pages
|
|
if p.size is not None
|
|
]
|
|
|
|
ds_doc: DsDocument = DsDocument(
|
|
name=title,
|
|
description=desc,
|
|
file_info=file_info,
|
|
main_text=main_text,
|
|
tables=tables,
|
|
figures=figures,
|
|
page_dimensions=page_dimensions,
|
|
)
|
|
|
|
return ds_doc
|
|
|
|
def __call__(self, conv_res: ConversionResult) -> DoclingDocument:
|
|
with TimeRecorder(conv_res, "glm", scope=ProfilingScope.DOCUMENT):
|
|
ds_doc = self._to_legacy_document(conv_res)
|
|
ds_doc_dict = ds_doc.model_dump(by_alias=True, exclude_none=True)
|
|
|
|
glm_doc = self.model.apply_on_doc(ds_doc_dict)
|
|
|
|
docling_doc: DoclingDocument = to_docling_document(glm_doc) # Experimental
|
|
|
|
# DEBUG code:
|
|
def draw_clusters_and_cells(ds_document, page_no, show: bool = False):
|
|
clusters_to_draw = []
|
|
image = copy.deepcopy(conv_res.pages[page_no].image)
|
|
for ix, elem in enumerate(ds_document.main_text):
|
|
if isinstance(elem, BaseText):
|
|
prov = elem.prov[0] # type: ignore
|
|
elif isinstance(elem, Ref):
|
|
_, arr, index = elem.ref.split("/")
|
|
index = int(index) # type: ignore
|
|
if arr == "tables":
|
|
prov = ds_document.tables[index].prov[0]
|
|
elif arr == "figures":
|
|
prov = ds_document.pictures[index].prov[0]
|
|
else:
|
|
prov = None
|
|
|
|
if prov and prov.page == page_no:
|
|
clusters_to_draw.append(
|
|
Cluster(
|
|
id=ix,
|
|
label=elem.name,
|
|
bbox=BoundingBox.from_tuple(
|
|
coord=prov.bbox, # type: ignore
|
|
origin=CoordOrigin.BOTTOMLEFT,
|
|
).to_top_left_origin(conv_res.pages[page_no].size.height),
|
|
)
|
|
)
|
|
|
|
draw = ImageDraw.Draw(image)
|
|
for c in clusters_to_draw:
|
|
x0, y0, x1, y1 = c.bbox.as_tuple()
|
|
draw.rectangle([(x0, y0), (x1, y1)], outline="red")
|
|
draw.text((x0 + 2, y0 + 2), f"{c.id}:{c.label}", fill=(255, 0, 0, 255))
|
|
|
|
cell_color = (
|
|
random.randint(30, 140),
|
|
random.randint(30, 140),
|
|
random.randint(30, 140),
|
|
)
|
|
for tc in c.cells: # [:1]:
|
|
x0, y0, x1, y1 = tc.bbox.as_tuple()
|
|
draw.rectangle([(x0, y0), (x1, y1)], outline=cell_color)
|
|
|
|
if show:
|
|
image.show()
|
|
else:
|
|
out_path: Path = (
|
|
Path(settings.debug.debug_output_path)
|
|
/ f"debug_{conv_res.input.file.stem}"
|
|
)
|
|
out_path.mkdir(parents=True, exist_ok=True)
|
|
|
|
out_file = out_path / f"doc_page_{page_no:05}.png"
|
|
image.save(str(out_file), format="png")
|
|
|
|
# for item in ds_doc.page_dimensions:
|
|
# page_no = item.page
|
|
# draw_clusters_and_cells(ds_doc, page_no)
|
|
|
|
return docling_doc
|