Docling/docling/datamodel/pipeline_options.py
Michele Dolfi 4cc6e3ea5e
feat: Describe pictures using vision models (#259)
* draft for picture description models

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* vlm description using AutoModelForVision2Seq

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* add generation options

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* update vlm API

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* allow only localhost traffic

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* rename model

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* do not run with vlm api

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* more renaming

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* fix examples path

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* apply CLI download login

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* fix name of cli argument

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* use with_smolvlm in models download

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

---------

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
2025-02-07 16:30:42 +01:00

297 lines
9.4 KiB
Python

import logging
import os
from enum import Enum
from pathlib import Path
from typing import Annotated, Any, Dict, List, Literal, Optional, Union
from pydantic import AnyUrl, BaseModel, ConfigDict, Field, model_validator
from pydantic_settings import BaseSettings, SettingsConfigDict
_log = logging.getLogger(__name__)
class AcceleratorDevice(str, Enum):
"""Devices to run model inference"""
AUTO = "auto"
CPU = "cpu"
CUDA = "cuda"
MPS = "mps"
class AcceleratorOptions(BaseSettings):
model_config = SettingsConfigDict(
env_prefix="DOCLING_", env_nested_delimiter="_", populate_by_name=True
)
num_threads: int = 4
device: AcceleratorDevice = AcceleratorDevice.AUTO
@model_validator(mode="before")
@classmethod
def check_alternative_envvars(cls, data: Any) -> Any:
r"""
Set num_threads from the "alternative" envvar OMP_NUM_THREADS.
The alternative envvar is used only if it is valid and the regular envvar is not set.
Notice: The standard pydantic settings mechanism with parameter "aliases" does not provide
the same functionality. In case the alias envvar is set and the user tries to override the
parameter in settings initialization, Pydantic treats the parameter provided in __init__()
as an extra input instead of simply overwriting the evvar value for that parameter.
"""
if isinstance(data, dict):
input_num_threads = data.get("num_threads")
# Check if to set the num_threads from the alternative envvar
if input_num_threads is None:
docling_num_threads = os.getenv("DOCLING_NUM_THREADS")
omp_num_threads = os.getenv("OMP_NUM_THREADS")
if docling_num_threads is None and omp_num_threads is not None:
try:
data["num_threads"] = int(omp_num_threads)
except ValueError:
_log.error(
"Ignoring misformatted envvar OMP_NUM_THREADS '%s'",
omp_num_threads,
)
return data
class TableFormerMode(str, Enum):
"""Modes for the TableFormer model."""
FAST = "fast"
ACCURATE = "accurate"
class TableStructureOptions(BaseModel):
"""Options for the table structure."""
do_cell_matching: bool = (
True
# True: Matches predictions back to PDF cells. Can break table output if PDF cells
# are merged across table columns.
# False: Let table structure model define the text cells, ignore PDF cells.
)
mode: TableFormerMode = TableFormerMode.FAST
class OcrOptions(BaseModel):
"""OCR options."""
kind: str
lang: List[str]
force_full_page_ocr: bool = False # If enabled a full page OCR is always applied
bitmap_area_threshold: float = (
0.05 # percentage of the area for a bitmap to processed with OCR
)
class RapidOcrOptions(OcrOptions):
"""Options for the RapidOCR engine."""
kind: Literal["rapidocr"] = "rapidocr"
# English and chinese are the most commly used models and have been tested with RapidOCR.
lang: List[str] = [
"english",
"chinese",
] # However, language as a parameter is not supported by rapidocr yet and hence changing this options doesn't affect anything.
# For more details on supported languages by RapidOCR visit https://rapidai.github.io/RapidOCRDocs/blog/2022/09/28/%E6%94%AF%E6%8C%81%E8%AF%86%E5%88%AB%E8%AF%AD%E8%A8%80/
# For more details on the following options visit https://rapidai.github.io/RapidOCRDocs/install_usage/api/RapidOCR/
text_score: float = 0.5 # same default as rapidocr
use_det: Optional[bool] = None # same default as rapidocr
use_cls: Optional[bool] = None # same default as rapidocr
use_rec: Optional[bool] = None # same default as rapidocr
# class Device(Enum):
# CPU = "CPU"
# CUDA = "CUDA"
# DIRECTML = "DIRECTML"
# AUTO = "AUTO"
# device: Device = Device.AUTO # Default value is AUTO
print_verbose: bool = False # same default as rapidocr
det_model_path: Optional[str] = None # same default as rapidocr
cls_model_path: Optional[str] = None # same default as rapidocr
rec_model_path: Optional[str] = None # same default as rapidocr
rec_keys_path: Optional[str] = None # same default as rapidocr
model_config = ConfigDict(
extra="forbid",
)
class EasyOcrOptions(OcrOptions):
"""Options for the EasyOCR engine."""
kind: Literal["easyocr"] = "easyocr"
lang: List[str] = ["fr", "de", "es", "en"]
use_gpu: Optional[bool] = None
confidence_threshold: float = 0.5
model_storage_directory: Optional[str] = None
recog_network: Optional[str] = "standard"
download_enabled: bool = True
model_config = ConfigDict(
extra="forbid",
protected_namespaces=(),
)
class TesseractCliOcrOptions(OcrOptions):
"""Options for the TesseractCli engine."""
kind: Literal["tesseract"] = "tesseract"
lang: List[str] = ["fra", "deu", "spa", "eng"]
tesseract_cmd: str = "tesseract"
path: Optional[str] = None
model_config = ConfigDict(
extra="forbid",
)
class TesseractOcrOptions(OcrOptions):
"""Options for the Tesseract engine."""
kind: Literal["tesserocr"] = "tesserocr"
lang: List[str] = ["fra", "deu", "spa", "eng"]
path: Optional[str] = None
model_config = ConfigDict(
extra="forbid",
)
class OcrMacOptions(OcrOptions):
"""Options for the Mac OCR engine."""
kind: Literal["ocrmac"] = "ocrmac"
lang: List[str] = ["fr-FR", "de-DE", "es-ES", "en-US"]
recognition: str = "accurate"
framework: str = "vision"
model_config = ConfigDict(
extra="forbid",
)
class PictureDescriptionBaseOptions(BaseModel):
kind: str
batch_size: int = 8
scale: float = 2
bitmap_area_threshold: float = (
0.2 # percentage of the area for a bitmap to processed with the models
)
class PictureDescriptionApiOptions(PictureDescriptionBaseOptions):
kind: Literal["api"] = "api"
url: AnyUrl = AnyUrl("http://localhost:8000/v1/chat/completions")
headers: Dict[str, str] = {}
params: Dict[str, Any] = {}
timeout: float = 20
prompt: str = "Describe this image in a few sentences."
provenance: str = ""
class PictureDescriptionVlmOptions(PictureDescriptionBaseOptions):
kind: Literal["vlm"] = "vlm"
repo_id: str
prompt: str = "Describe this image in a few sentences."
# Config from here https://huggingface.co/docs/transformers/en/main_classes/text_generation#transformers.GenerationConfig
generation_config: Dict[str, Any] = dict(max_new_tokens=200, do_sample=False)
@property
def repo_cache_folder(self) -> str:
return self.repo_id.replace("/", "--")
smolvlm_picture_description = PictureDescriptionVlmOptions(
repo_id="HuggingFaceTB/SmolVLM-256M-Instruct"
)
# phi_picture_description = PictureDescriptionVlmOptions(repo_id="microsoft/Phi-3-vision-128k-instruct")
granite_picture_description = PictureDescriptionVlmOptions(
repo_id="ibm-granite/granite-vision-3.1-2b-preview",
prompt="What is shown in this image?",
)
# Define an enum for the backend options
class PdfBackend(str, Enum):
"""Enum of valid PDF backends."""
PYPDFIUM2 = "pypdfium2"
DLPARSE_V1 = "dlparse_v1"
DLPARSE_V2 = "dlparse_v2"
# Define an enum for the ocr engines
class OcrEngine(str, Enum):
"""Enum of valid OCR engines."""
EASYOCR = "easyocr"
TESSERACT_CLI = "tesseract_cli"
TESSERACT = "tesseract"
OCRMAC = "ocrmac"
RAPIDOCR = "rapidocr"
class PipelineOptions(BaseModel):
"""Base pipeline options."""
create_legacy_output: bool = (
True # This default will be set to False on a future version of docling
)
document_timeout: Optional[float] = None
accelerator_options: AcceleratorOptions = AcceleratorOptions()
class PdfPipelineOptions(PipelineOptions):
"""Options for the PDF pipeline."""
artifacts_path: Optional[Union[Path, str]] = None
do_table_structure: bool = True # True: perform table structure extraction
do_ocr: bool = True # True: perform OCR, replace programmatic PDF text
do_code_enrichment: bool = False # True: perform code OCR
do_formula_enrichment: bool = False # True: perform formula OCR, return Latex code
do_picture_classification: bool = False # True: classify pictures in documents
do_picture_description: bool = False # True: run describe pictures in documents
table_structure_options: TableStructureOptions = TableStructureOptions()
ocr_options: Union[
EasyOcrOptions,
TesseractCliOcrOptions,
TesseractOcrOptions,
OcrMacOptions,
RapidOcrOptions,
] = Field(EasyOcrOptions(), discriminator="kind")
picture_description_options: Annotated[
Union[PictureDescriptionApiOptions, PictureDescriptionVlmOptions],
Field(discriminator="kind"),
] = smolvlm_picture_description
images_scale: float = 1.0
generate_page_images: bool = False
generate_picture_images: bool = False
generate_table_images: bool = Field(
default=False,
deprecated=(
"Field `generate_table_images` is deprecated. "
"To obtain table images, set `PdfPipelineOptions.generate_page_images = True` "
"before conversion and then use the `TableItem.get_image` function."
),
)