Docling/docling/datamodel/base_models.py
Cesar Berrospi Ramis 428b656793
feat(xml-jats): parse XML JATS documents (#967)
* chore(xml-jats): separate authors and affiliations

In XML PubMed (JATS) backend, convert authors and affiliations as they
are typically rendered on PDFs.

Signed-off-by: Cesar Berrospi Ramis <75900930+ceberam@users.noreply.github.com>

* fix(xml-jats): replace new line character by a space

Instead of removing new line character from text, replace it by a space character.

Signed-off-by: Cesar Berrospi Ramis <75900930+ceberam@users.noreply.github.com>

* feat(xml-jats): improve existing parser and extend features

Partially support lists, respect reading order, parse more sections, support equations, better text formatting.

Signed-off-by: Cesar Berrospi Ramis <75900930+ceberam@users.noreply.github.com>

* chore(xml-jats): rename PubMed objects to JATS

Signed-off-by: Cesar Berrospi Ramis <75900930+ceberam@users.noreply.github.com>

---------

Signed-off-by: Cesar Berrospi Ramis <75900930+ceberam@users.noreply.github.com>
2025-02-17 10:43:31 +01:00

262 lines
6.9 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from enum import Enum
from typing import TYPE_CHECKING, Dict, List, Optional, Union
from docling_core.types.doc import (
BoundingBox,
DocItemLabel,
NodeItem,
PictureDataType,
Size,
TableCell,
)
from docling_core.types.io import ( # DO ΝΟΤ REMOVE; explicitly exposed from this location
DocumentStream,
)
from PIL.Image import Image
from pydantic import BaseModel, ConfigDict
if TYPE_CHECKING:
from docling.backend.pdf_backend import PdfPageBackend
class ConversionStatus(str, Enum):
PENDING = "pending"
STARTED = "started"
FAILURE = "failure"
SUCCESS = "success"
PARTIAL_SUCCESS = "partial_success"
SKIPPED = "skipped"
class InputFormat(str, Enum):
"""A document format supported by document backend parsers."""
DOCX = "docx"
PPTX = "pptx"
HTML = "html"
IMAGE = "image"
PDF = "pdf"
ASCIIDOC = "asciidoc"
MD = "md"
CSV = "csv"
XLSX = "xlsx"
XML_USPTO = "xml_uspto"
XML_JATS = "xml_jats"
JSON_DOCLING = "json_docling"
class OutputFormat(str, Enum):
MARKDOWN = "md"
JSON = "json"
HTML = "html"
TEXT = "text"
DOCTAGS = "doctags"
FormatToExtensions: Dict[InputFormat, List[str]] = {
InputFormat.DOCX: ["docx", "dotx", "docm", "dotm"],
InputFormat.PPTX: ["pptx", "potx", "ppsx", "pptm", "potm", "ppsm"],
InputFormat.PDF: ["pdf"],
InputFormat.MD: ["md"],
InputFormat.HTML: ["html", "htm", "xhtml"],
InputFormat.XML_JATS: ["xml", "nxml"],
InputFormat.IMAGE: ["jpg", "jpeg", "png", "tif", "tiff", "bmp"],
InputFormat.ASCIIDOC: ["adoc", "asciidoc", "asc"],
InputFormat.CSV: ["csv"],
InputFormat.XLSX: ["xlsx"],
InputFormat.XML_USPTO: ["xml", "txt"],
InputFormat.JSON_DOCLING: ["json"],
}
FormatToMimeType: Dict[InputFormat, List[str]] = {
InputFormat.DOCX: [
"application/vnd.openxmlformats-officedocument.wordprocessingml.document",
"application/vnd.openxmlformats-officedocument.wordprocessingml.template",
],
InputFormat.PPTX: [
"application/vnd.openxmlformats-officedocument.presentationml.template",
"application/vnd.openxmlformats-officedocument.presentationml.slideshow",
"application/vnd.openxmlformats-officedocument.presentationml.presentation",
],
InputFormat.HTML: ["text/html", "application/xhtml+xml"],
InputFormat.XML_JATS: ["application/xml"],
InputFormat.IMAGE: [
"image/png",
"image/jpeg",
"image/tiff",
"image/gif",
"image/bmp",
],
InputFormat.PDF: ["application/pdf"],
InputFormat.ASCIIDOC: ["text/asciidoc"],
InputFormat.MD: ["text/markdown", "text/x-markdown"],
InputFormat.CSV: ["text/csv"],
InputFormat.XLSX: [
"application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
],
InputFormat.XML_USPTO: ["application/xml", "text/plain"],
InputFormat.JSON_DOCLING: ["application/json"],
}
MimeTypeToFormat: dict[str, list[InputFormat]] = {
mime: [fmt for fmt in FormatToMimeType if mime in FormatToMimeType[fmt]]
for value in FormatToMimeType.values()
for mime in value
}
class DocInputType(str, Enum):
PATH = "path"
STREAM = "stream"
class DoclingComponentType(str, Enum):
DOCUMENT_BACKEND = "document_backend"
MODEL = "model"
DOC_ASSEMBLER = "doc_assembler"
USER_INPUT = "user_input"
class ErrorItem(BaseModel):
component_type: DoclingComponentType
module_name: str
error_message: str
class Cell(BaseModel):
id: int
text: str
bbox: BoundingBox
class OcrCell(Cell):
confidence: float
class Cluster(BaseModel):
id: int
label: DocItemLabel
bbox: BoundingBox
confidence: float = 1.0
cells: List[Cell] = []
children: List["Cluster"] = [] # Add child cluster support
class BasePageElement(BaseModel):
label: DocItemLabel
id: int
page_no: int
cluster: Cluster
text: Optional[str] = None
class LayoutPrediction(BaseModel):
clusters: List[Cluster] = []
class ContainerElement(
BasePageElement
): # Used for Form and Key-Value-Regions, only for typing.
pass
class Table(BasePageElement):
otsl_seq: List[str]
num_rows: int = 0
num_cols: int = 0
table_cells: List[TableCell]
class TableStructurePrediction(BaseModel):
table_map: Dict[int, Table] = {}
class TextElement(BasePageElement):
text: str
class FigureElement(BasePageElement):
annotations: List[PictureDataType] = []
provenance: Optional[str] = None
predicted_class: Optional[str] = None
confidence: Optional[float] = None
class FigureClassificationPrediction(BaseModel):
figure_count: int = 0
figure_map: Dict[int, FigureElement] = {}
class EquationPrediction(BaseModel):
equation_count: int = 0
equation_map: Dict[int, TextElement] = {}
class PagePredictions(BaseModel):
layout: Optional[LayoutPrediction] = None
tablestructure: Optional[TableStructurePrediction] = None
figures_classification: Optional[FigureClassificationPrediction] = None
equations_prediction: Optional[EquationPrediction] = None
PageElement = Union[TextElement, Table, FigureElement, ContainerElement]
class AssembledUnit(BaseModel):
elements: List[PageElement] = []
body: List[PageElement] = []
headers: List[PageElement] = []
class ItemAndImageEnrichmentElement(BaseModel):
model_config = ConfigDict(arbitrary_types_allowed=True)
item: NodeItem
image: Image
class Page(BaseModel):
model_config = ConfigDict(arbitrary_types_allowed=True)
page_no: int
# page_hash: Optional[str] = None
size: Optional[Size] = None
cells: List[Cell] = []
predictions: PagePredictions = PagePredictions()
assembled: Optional[AssembledUnit] = None
_backend: Optional["PdfPageBackend"] = (
None # Internal PDF backend. By default it is cleared during assembling.
)
_default_image_scale: float = 1.0 # Default image scale for external usage.
_image_cache: Dict[float, Image] = (
{}
) # Cache of images in different scales. By default it is cleared during assembling.
def get_image(
self, scale: float = 1.0, cropbox: Optional[BoundingBox] = None
) -> Optional[Image]:
if self._backend is None:
return self._image_cache.get(scale, None)
if not scale in self._image_cache:
if cropbox is None:
self._image_cache[scale] = self._backend.get_page_image(scale=scale)
else:
return self._backend.get_page_image(scale=scale, cropbox=cropbox)
if cropbox is None:
return self._image_cache[scale]
else:
page_im = self._image_cache[scale]
assert self.size is not None
return page_im.crop(
cropbox.to_top_left_origin(page_height=self.size.height)
.scaled(scale=scale)
.as_tuple()
)
@property
def image(self) -> Optional[Image]:
return self.get_image(scale=self._default_image_scale)