Docling/docling/models/base_model.py
Michele Dolfi 6eaae3cba0
feat: add factory for ocr engines via plugins (#1010)
* add factory for ocr engines

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* apply pre-commit after rebase

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* add picture description factory

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* fix enable option

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* switch to create methods

Signed-off-by: Panos Vagenas <pva@zurich.ibm.com>

* make `options` an explicit kwarg

Signed-off-by: Panos Vagenas <pva@zurich.ibm.com>

* keep old lock of docling-core

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* fix lock

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* add allow_external_plugins option

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* add factory return and ignore options type

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

---------

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
Signed-off-by: Panos Vagenas <pva@zurich.ibm.com>
Co-authored-by: Panos Vagenas <pva@zurich.ibm.com>
2025-03-18 13:58:05 +01:00

96 lines
2.9 KiB
Python

from abc import ABC, abstractmethod
from typing import Any, Generic, Iterable, Optional, Protocol, Type
from docling_core.types.doc import BoundingBox, DocItem, DoclingDocument, NodeItem
from typing_extensions import TypeVar
from docling.datamodel.base_models import ItemAndImageEnrichmentElement, Page
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import BaseOptions
from docling.datamodel.settings import settings
class BaseModelWithOptions(Protocol):
@classmethod
def get_options_type(cls) -> Type[BaseOptions]: ...
def __init__(self, *, options: BaseOptions, **kwargs): ...
class BasePageModel(ABC):
@abstractmethod
def __call__(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]:
pass
EnrichElementT = TypeVar("EnrichElementT", default=NodeItem)
class GenericEnrichmentModel(ABC, Generic[EnrichElementT]):
elements_batch_size: int = settings.perf.elements_batch_size
@abstractmethod
def is_processable(self, doc: DoclingDocument, element: NodeItem) -> bool:
pass
@abstractmethod
def prepare_element(
self, conv_res: ConversionResult, element: NodeItem
) -> Optional[EnrichElementT]:
pass
@abstractmethod
def __call__(
self, doc: DoclingDocument, element_batch: Iterable[EnrichElementT]
) -> Iterable[NodeItem]:
pass
class BaseEnrichmentModel(GenericEnrichmentModel[NodeItem]):
def prepare_element(
self, conv_res: ConversionResult, element: NodeItem
) -> Optional[NodeItem]:
if self.is_processable(doc=conv_res.document, element=element):
return element
return None
class BaseItemAndImageEnrichmentModel(
GenericEnrichmentModel[ItemAndImageEnrichmentElement]
):
images_scale: float
expansion_factor: float = 0.0
def prepare_element(
self, conv_res: ConversionResult, element: NodeItem
) -> Optional[ItemAndImageEnrichmentElement]:
if not self.is_processable(doc=conv_res.document, element=element):
return None
assert isinstance(element, DocItem)
element_prov = element.prov[0]
bbox = element_prov.bbox
width = bbox.r - bbox.l
height = bbox.t - bbox.b
# TODO: move to a utility in the BoundingBox class
expanded_bbox = BoundingBox(
l=bbox.l - width * self.expansion_factor,
t=bbox.t + height * self.expansion_factor,
r=bbox.r + width * self.expansion_factor,
b=bbox.b - height * self.expansion_factor,
coord_origin=bbox.coord_origin,
)
page_ix = element_prov.page_no - 1
cropped_image = conv_res.pages[page_ix].get_image(
scale=self.images_scale, cropbox=expanded_bbox
)
return ItemAndImageEnrichmentElement(item=element, image=cropped_image)