Docling/docling/models/rapid_ocr_model.py
Nikos Livathinos 19fad9261c
feat: Introduce support for GPU Accelerators (#593)
* Upgraded Layout Postprocessing, sending old code back to ERZ

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Implement hierachical cluster layout processing

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Pass nested cluster processing through full pipeline

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Pass nested clusters through GLM as payload

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Move to_docling_document from ds-glm to this repo

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Clean up imports again

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* feat(Accelerator): Introduce options to control the num_threads and device from API, envvars, CLI.
- Introduce the AcceleratorOptions, AcceleratorDevice and use them to set the device where the models run.
- Introduce the accelerator_utils with function to decide the device and resolve the AUTO setting.
- Refactor the way how the docling-ibm-models are called to match the new init signature of models.
- Translate the accelerator options to the specific inputs for third-party models.
- Extend the docling CLI with parameters to set the num_threads and device.
- Add new unit tests.
- Write new example how to use the accelerator options.

* fix: Improve the pydantic objects in the pipeline_options and imports.

Signed-off-by: Nikos Livathinos <nli@zurich.ibm.com>

* fix: TableStructureModel: Refactor the artifacts path to use the new structure for fast/accurate model

Signed-off-by: Nikos Livathinos <nli@zurich.ibm.com>

* Updated test ground-truth

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Updated test ground-truth (again), bugfix for empty layout

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* fix: Do proper check to set the device in EasyOCR, RapidOCR.

Signed-off-by: Nikos Livathinos <nli@zurich.ibm.com>

* Rollback changes from main

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Update test gt

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Remove unused debug settings

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Review fixes

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Nail the accelerator defaults for MPS

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

---------

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>
Signed-off-by: Nikos Livathinos <nli@zurich.ibm.com>
Co-authored-by: Christoph Auer <cau@zurich.ibm.com>
Co-authored-by: Christoph Auer <60343111+cau-git@users.noreply.github.com>
2024-12-13 17:45:22 +01:00

128 lines
4.9 KiB
Python

import logging
from typing import Iterable
import numpy
from docling_core.types.doc import BoundingBox, CoordOrigin
from docling.datamodel.base_models import OcrCell, Page
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import (
AcceleratorDevice,
AcceleratorOptions,
RapidOcrOptions,
)
from docling.datamodel.settings import settings
from docling.models.base_ocr_model import BaseOcrModel
from docling.utils.accelerator_utils import decide_device
from docling.utils.profiling import TimeRecorder
_log = logging.getLogger(__name__)
class RapidOcrModel(BaseOcrModel):
def __init__(
self,
enabled: bool,
options: RapidOcrOptions,
accelerator_options: AcceleratorOptions,
):
super().__init__(enabled=enabled, options=options)
self.options: RapidOcrOptions
self.scale = 3 # multiplier for 72 dpi == 216 dpi.
if self.enabled:
try:
from rapidocr_onnxruntime import RapidOCR # type: ignore
except ImportError:
raise ImportError(
"RapidOCR is not installed. Please install it via `pip install rapidocr_onnxruntime` to use this OCR engine. "
"Alternatively, Docling has support for other OCR engines. See the documentation."
)
# Decide the accelerator devices
device = decide_device(accelerator_options.device)
use_cuda = str(AcceleratorDevice.CUDA.value).lower() in device
use_dml = accelerator_options.device == AcceleratorDevice.AUTO
intra_op_num_threads = accelerator_options.num_threads
self.reader = RapidOCR(
text_score=self.options.text_score,
cls_use_cuda=use_cuda,
rec_use_cuda=use_cuda,
det_use_cuda=use_cuda,
det_use_dml=use_dml,
cls_use_dml=use_dml,
rec_use_dml=use_dml,
intra_op_num_threads=intra_op_num_threads,
print_verbose=self.options.print_verbose,
det_model_path=self.options.det_model_path,
cls_model_path=self.options.cls_model_path,
rec_model_path=self.options.rec_model_path,
)
def __call__(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]:
if not self.enabled:
yield from page_batch
return
for page in page_batch:
assert page._backend is not None
if not page._backend.is_valid():
yield page
else:
with TimeRecorder(conv_res, "ocr"):
ocr_rects = self.get_ocr_rects(page)
all_ocr_cells = []
for ocr_rect in ocr_rects:
# Skip zero area boxes
if ocr_rect.area() == 0:
continue
high_res_image = page._backend.get_page_image(
scale=self.scale, cropbox=ocr_rect
)
im = numpy.array(high_res_image)
result, _ = self.reader(
im,
use_det=self.options.use_det,
use_cls=self.options.use_cls,
use_rec=self.options.use_rec,
)
del high_res_image
del im
if result is not None:
cells = [
OcrCell(
id=ix,
text=line[1],
confidence=line[2],
bbox=BoundingBox.from_tuple(
coord=(
(line[0][0][0] / self.scale) + ocr_rect.l,
(line[0][0][1] / self.scale) + ocr_rect.t,
(line[0][2][0] / self.scale) + ocr_rect.l,
(line[0][2][1] / self.scale) + ocr_rect.t,
),
origin=CoordOrigin.TOPLEFT,
),
)
for ix, line in enumerate(result)
]
all_ocr_cells.extend(cells)
# Post-process the cells
page.cells = self.post_process_cells(all_ocr_cells, page.cells)
# DEBUG code:
if settings.debug.visualize_ocr:
self.draw_ocr_rects_and_cells(conv_res, page, ocr_rects)
yield page