Docling/docling/pipeline/asr_pipeline.py
Peter W. J. Staar 1557e7ce3e
feat: Support audio input (#1763)
* scaffolding in place

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* doing scaffolding for audio pipeline

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* WIP: got first transcription working

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* all working, time to start cleaning up

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* first working ASR pipeline

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* added openai-whisper as a first transcription model

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* updating with asr_options

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* finalised the first working ASR pipeline with Whisper

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* use whisper from the latest git commit

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* Update docling/datamodel/pipeline_options.py

Co-authored-by: Michele Dolfi <97102151+dolfim-ibm@users.noreply.github.com>
Signed-off-by: Peter W. J. Staar <91719829+PeterStaar-IBM@users.noreply.github.com>

* Update docling/datamodel/pipeline_options.py

Co-authored-by: Michele Dolfi <97102151+dolfim-ibm@users.noreply.github.com>
Signed-off-by: Peter W. J. Staar <91719829+PeterStaar-IBM@users.noreply.github.com>

* updated comment

Signed-off-by: Peter Staar <taa@zurich.ibm.com>

* AudioBackend -> DummyBackend

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* file rename

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Rename to NoOpBackend, add test for ASR pipeline

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Support every format in NoOpBackend

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Add missing audio file and test

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Install ffmpeg system dependency for ASR test

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

---------

Signed-off-by: Peter Staar <taa@zurich.ibm.com>
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
Signed-off-by: Peter W. J. Staar <91719829+PeterStaar-IBM@users.noreply.github.com>
Signed-off-by: Christoph Auer <cau@zurich.ibm.com>
Co-authored-by: Michele Dolfi <dol@zurich.ibm.com>
Co-authored-by: Michele Dolfi <97102151+dolfim-ibm@users.noreply.github.com>
Co-authored-by: Christoph Auer <cau@zurich.ibm.com>
2025-06-23 14:47:26 +02:00

254 lines
8.9 KiB
Python

import logging
import os
import re
from io import BytesIO
from pathlib import Path
from typing import List, Optional, Union, cast
from docling_core.types.doc import DoclingDocument, DocumentOrigin
# import whisper # type: ignore
# import librosa
# import numpy as np
# import soundfile as sf # type: ignore
from docling_core.types.doc.labels import DocItemLabel
from pydantic import BaseModel, Field, validator
from docling.backend.abstract_backend import AbstractDocumentBackend
from docling.backend.noop_backend import NoOpBackend
# from pydub import AudioSegment # type: ignore
# from transformers import WhisperForConditionalGeneration, WhisperProcessor, pipeline
from docling.datamodel.accelerator_options import (
AcceleratorOptions,
)
from docling.datamodel.base_models import (
ConversionStatus,
FormatToMimeType,
)
from docling.datamodel.document import ConversionResult, InputDocument
from docling.datamodel.pipeline_options import (
AsrPipelineOptions,
)
from docling.datamodel.pipeline_options_asr_model import (
InlineAsrNativeWhisperOptions,
# AsrResponseFormat,
InlineAsrOptions,
)
from docling.datamodel.pipeline_options_vlm_model import (
InferenceFramework,
)
from docling.datamodel.settings import settings
from docling.pipeline.base_pipeline import BasePipeline
from docling.utils.accelerator_utils import decide_device
from docling.utils.profiling import ProfilingScope, TimeRecorder
_log = logging.getLogger(__name__)
class _ConversationWord(BaseModel):
text: str
start_time: Optional[float] = Field(
None, description="Start time in seconds from video start"
)
end_time: Optional[float] = Field(
None, ge=0, description="End time in seconds from video start"
)
class _ConversationItem(BaseModel):
text: str
start_time: Optional[float] = Field(
None, description="Start time in seconds from video start"
)
end_time: Optional[float] = Field(
None, ge=0, description="End time in seconds from video start"
)
speaker_id: Optional[int] = Field(None, description="Numeric speaker identifier")
speaker: Optional[str] = Field(
None, description="Speaker name, defaults to speaker-{speaker_id}"
)
words: Optional[list[_ConversationWord]] = Field(
None, description="Individual words with time-stamps"
)
def __lt__(self, other):
if not isinstance(other, _ConversationItem):
return NotImplemented
return self.start_time < other.start_time
def __eq__(self, other):
if not isinstance(other, _ConversationItem):
return NotImplemented
return self.start_time == other.start_time
def to_string(self) -> str:
"""Format the conversation entry as a string"""
result = ""
if (self.start_time is not None) and (self.end_time is not None):
result += f"[time: {self.start_time}-{self.end_time}] "
if self.speaker is not None:
result += f"[speaker:{self.speaker}] "
result += self.text
return result
class _NativeWhisperModel:
def __init__(
self,
enabled: bool,
artifacts_path: Optional[Path],
accelerator_options: AcceleratorOptions,
asr_options: InlineAsrNativeWhisperOptions,
):
"""
Transcriber using native Whisper.
"""
self.enabled = enabled
_log.info(f"artifacts-path: {artifacts_path}")
_log.info(f"accelerator_options: {accelerator_options}")
if self.enabled:
try:
import whisper # type: ignore
except ImportError:
raise ImportError(
"whisper is not installed. Please install it via `pip install openai-whisper` or do `uv sync --extra asr`."
)
self.asr_options = asr_options
self.max_tokens = asr_options.max_new_tokens
self.temperature = asr_options.temperature
self.device = decide_device(
accelerator_options.device,
supported_devices=asr_options.supported_devices,
)
_log.info(f"Available device for Whisper: {self.device}")
self.model_name = asr_options.repo_id
_log.info(f"loading _NativeWhisperModel({self.model_name})")
if artifacts_path is not None:
_log.info(f"loading {self.model_name} from {artifacts_path}")
self.model = whisper.load_model(
name=self.model_name,
device=self.device,
download_root=str(artifacts_path),
)
else:
self.model = whisper.load_model(
name=self.model_name, device=self.device
)
self.verbose = asr_options.verbose
self.timestamps = asr_options.timestamps
self.word_timestamps = asr_options.word_timestamps
def run(self, conv_res: ConversionResult) -> ConversionResult:
audio_path: Path = Path(conv_res.input.file).resolve()
try:
conversation = self.transcribe(audio_path)
# Ensure we have a proper DoclingDocument
origin = DocumentOrigin(
filename=conv_res.input.file.name or "audio.wav",
mimetype="audio/x-wav",
binary_hash=conv_res.input.document_hash,
)
conv_res.document = DoclingDocument(
name=conv_res.input.file.stem or "audio.wav", origin=origin
)
for citem in conversation:
conv_res.document.add_text(
label=DocItemLabel.TEXT, text=citem.to_string()
)
conv_res.status = ConversionStatus.SUCCESS
return conv_res
except Exception as exc:
_log.error(f"Audio tranciption has an error: {exc}")
conv_res.status = ConversionStatus.FAILURE
return conv_res
def transcribe(self, fpath: Path) -> list[_ConversationItem]:
result = self.model.transcribe(
str(fpath), verbose=self.verbose, word_timestamps=self.word_timestamps
)
convo: list[_ConversationItem] = []
for _ in result["segments"]:
item = _ConversationItem(
start_time=_["start"], end_time=_["end"], text=_["text"], words=[]
)
if "words" in _ and self.word_timestamps:
item.words = []
for __ in _["words"]:
item.words.append(
_ConversationWord(
start_time=__["start"],
end_time=__["end"],
text=__["word"],
)
)
convo.append(item)
return convo
class AsrPipeline(BasePipeline):
def __init__(self, pipeline_options: AsrPipelineOptions):
super().__init__(pipeline_options)
self.keep_backend = True
self.pipeline_options: AsrPipelineOptions = pipeline_options
artifacts_path: Optional[Path] = None
if pipeline_options.artifacts_path is not None:
artifacts_path = Path(pipeline_options.artifacts_path).expanduser()
elif settings.artifacts_path is not None:
artifacts_path = Path(settings.artifacts_path).expanduser()
if artifacts_path is not None and not artifacts_path.is_dir():
raise RuntimeError(
f"The value of {artifacts_path=} is not valid. "
"When defined, it must point to a folder containing all models required by the pipeline."
)
if isinstance(self.pipeline_options.asr_options, InlineAsrNativeWhisperOptions):
asr_options: InlineAsrNativeWhisperOptions = (
self.pipeline_options.asr_options
)
self._model = _NativeWhisperModel(
enabled=True, # must be always enabled for this pipeline to make sense.
artifacts_path=artifacts_path,
accelerator_options=pipeline_options.accelerator_options,
asr_options=asr_options,
)
else:
_log.error(f"No model support for {self.pipeline_options.asr_options}")
def _determine_status(self, conv_res: ConversionResult) -> ConversionStatus:
status = ConversionStatus.SUCCESS
return status
@classmethod
def get_default_options(cls) -> AsrPipelineOptions:
return AsrPipelineOptions()
def _build_document(self, conv_res: ConversionResult) -> ConversionResult:
_log.info(f"start _build_document in AsrPipeline: {conv_res.input.file}")
with TimeRecorder(conv_res, "doc_build", scope=ProfilingScope.DOCUMENT):
self._model.run(conv_res=conv_res)
return conv_res
@classmethod
def is_backend_supported(cls, backend: AbstractDocumentBackend):
return isinstance(backend, NoOpBackend)