Docling/tests/data/jats/pone.0234687.nxml
Cesar Berrospi Ramis 428b656793
feat(xml-jats): parse XML JATS documents (#967)
* chore(xml-jats): separate authors and affiliations

In XML PubMed (JATS) backend, convert authors and affiliations as they
are typically rendered on PDFs.

Signed-off-by: Cesar Berrospi Ramis <75900930+ceberam@users.noreply.github.com>

* fix(xml-jats): replace new line character by a space

Instead of removing new line character from text, replace it by a space character.

Signed-off-by: Cesar Berrospi Ramis <75900930+ceberam@users.noreply.github.com>

* feat(xml-jats): improve existing parser and extend features

Partially support lists, respect reading order, parse more sections, support equations, better text formatting.

Signed-off-by: Cesar Berrospi Ramis <75900930+ceberam@users.noreply.github.com>

* chore(xml-jats): rename PubMed objects to JATS

Signed-off-by: Cesar Berrospi Ramis <75900930+ceberam@users.noreply.github.com>

---------

Signed-off-by: Cesar Berrospi Ramis <75900930+ceberam@users.noreply.github.com>
2025-02-17 10:43:31 +01:00

60 lines
154 KiB
Plaintext
Vendored

<!DOCTYPE article
PUBLIC "-//NLM//DTD JATS (Z39.96) Journal Archiving and Interchange DTD with MathML3 v1.2 20190208//EN" "JATS-archivearticle1-mathml3.dtd">
<article xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML" article-type="research-article"><?properties open_access?><front><journal-meta><journal-id journal-id-type="nlm-ta">PLoS One</journal-id><journal-id journal-id-type="iso-abbrev">PLoS ONE</journal-id><journal-id journal-id-type="publisher-id">plos</journal-id><journal-id journal-id-type="pmc">plosone</journal-id><journal-title-group><journal-title>PLoS ONE</journal-title></journal-title-group><issn pub-type="epub">1932-6203</issn><publisher><publisher-name>Public Library of Science</publisher-name><publisher-loc>San Francisco, CA USA</publisher-loc></publisher></journal-meta><article-meta><article-id pub-id-type="pmid">32555654</article-id><article-id pub-id-type="pmc">7302504</article-id><article-id pub-id-type="doi">10.1371/journal.pone.0234687</article-id><article-id pub-id-type="publisher-id">PONE-D-20-07831</article-id><article-categories><subj-group subj-group-type="heading"><subject>Research Article</subject></subj-group><subj-group subj-group-type="Discipline-v3"><subject>Biology and Life Sciences</subject><subj-group><subject>Nutrition</subject><subj-group><subject>Diet</subject><subj-group><subject>Beverages</subject><subj-group><subject>Milk</subject></subj-group></subj-group></subj-group></subj-group></subj-group><subj-group subj-group-type="Discipline-v3"><subject>Medicine and Health Sciences</subject><subj-group><subject>Nutrition</subject><subj-group><subject>Diet</subject><subj-group><subject>Beverages</subject><subj-group><subject>Milk</subject></subj-group></subj-group></subj-group></subj-group></subj-group><subj-group subj-group-type="Discipline-v3"><subject>Biology and Life Sciences</subject><subj-group><subject>Anatomy</subject><subj-group><subject>Body Fluids</subject><subj-group><subject>Milk</subject></subj-group></subj-group></subj-group></subj-group><subj-group subj-group-type="Discipline-v3"><subject>Medicine and Health Sciences</subject><subj-group><subject>Anatomy</subject><subj-group><subject>Body Fluids</subject><subj-group><subject>Milk</subject></subj-group></subj-group></subj-group></subj-group><subj-group subj-group-type="Discipline-v3"><subject>Biology and Life Sciences</subject><subj-group><subject>Physiology</subject><subj-group><subject>Body Fluids</subject><subj-group><subject>Milk</subject></subj-group></subj-group></subj-group></subj-group><subj-group subj-group-type="Discipline-v3"><subject>Medicine and Health Sciences</subject><subj-group><subject>Physiology</subject><subj-group><subject>Body Fluids</subject><subj-group><subject>Milk</subject></subj-group></subj-group></subj-group></subj-group><subj-group subj-group-type="Discipline-v3"><subject>Biology and Life Sciences</subject><subj-group><subject>Anatomy</subject><subj-group><subject>Body Fluids</subject><subj-group><subject>Urine</subject></subj-group></subj-group></subj-group></subj-group><subj-group subj-group-type="Discipline-v3"><subject>Medicine and Health Sciences</subject><subj-group><subject>Anatomy</subject><subj-group><subject>Body Fluids</subject><subj-group><subject>Urine</subject></subj-group></subj-group></subj-group></subj-group><subj-group subj-group-type="Discipline-v3"><subject>Biology and Life Sciences</subject><subj-group><subject>Physiology</subject><subj-group><subject>Body Fluids</subject><subj-group><subject>Urine</subject></subj-group></subj-group></subj-group></subj-group><subj-group subj-group-type="Discipline-v3"><subject>Medicine and Health Sciences</subject><subj-group><subject>Physiology</subject><subj-group><subject>Body Fluids</subject><subj-group><subject>Urine</subject></subj-group></subj-group></subj-group></subj-group><subj-group subj-group-type="Discipline-v3"><subject>Physical Sciences</subject><subj-group><subject>Physics</subject><subj-group><subject>Electricity</subject></subj-group></subj-group></subj-group><subj-group subj-group-type="Discipline-v3"><subject>Engineering and Technology</subject><subj-group><subject>Energy and Power</subject><subj-group><subject>Fuels</subject></subj-group></subj-group></subj-group><subj-group subj-group-type="Discipline-v3"><subject>Physical Sciences</subject><subj-group><subject>Materials Science</subject><subj-group><subject>Materials</subject><subj-group><subject>Fuels</subject></subj-group></subj-group></subj-group></subj-group><subj-group subj-group-type="Discipline-v3"><subject>Research and Analysis Methods</subject><subj-group><subject>Animal Studies</subject><subj-group><subject>Experimental Organism Systems</subject><subj-group><subject>Model Organisms</subject><subj-group><subject>Maize</subject></subj-group></subj-group></subj-group></subj-group></subj-group><subj-group subj-group-type="Discipline-v3"><subject>Research and Analysis Methods</subject><subj-group><subject>Model Organisms</subject><subj-group><subject>Maize</subject></subj-group></subj-group></subj-group><subj-group subj-group-type="Discipline-v3"><subject>Biology and Life Sciences</subject><subj-group><subject>Organisms</subject><subj-group><subject>Eukaryota</subject><subj-group><subject>Plants</subject><subj-group><subject>Grasses</subject><subj-group><subject>Maize</subject></subj-group></subj-group></subj-group></subj-group></subj-group></subj-group><subj-group subj-group-type="Discipline-v3"><subject>Research and Analysis Methods</subject><subj-group><subject>Animal Studies</subject><subj-group><subject>Experimental Organism Systems</subject><subj-group><subject>Plant and Algal Models</subject><subj-group><subject>Maize</subject></subj-group></subj-group></subj-group></subj-group></subj-group><subj-group subj-group-type="Discipline-v3"><subject>Biology and Life Sciences</subject><subj-group><subject>Nutrition</subject><subj-group><subject>Diet</subject></subj-group></subj-group></subj-group><subj-group subj-group-type="Discipline-v3"><subject>Medicine and Health Sciences</subject><subj-group><subject>Nutrition</subject><subj-group><subject>Diet</subject></subj-group></subj-group></subj-group><subj-group subj-group-type="Discipline-v3"><subject>Biology and Life Sciences</subject><subj-group><subject>Psychology</subject><subj-group><subject>Behavior</subject><subj-group><subject>Animal Behavior</subject><subj-group><subject>Grazing</subject></subj-group></subj-group></subj-group></subj-group></subj-group><subj-group subj-group-type="Discipline-v3"><subject>Social Sciences</subject><subj-group><subject>Psychology</subject><subj-group><subject>Behavior</subject><subj-group><subject>Animal Behavior</subject><subj-group><subject>Grazing</subject></subj-group></subj-group></subj-group></subj-group></subj-group><subj-group subj-group-type="Discipline-v3"><subject>Biology and Life Sciences</subject><subj-group><subject>Zoology</subject><subj-group><subject>Animal Behavior</subject><subj-group><subject>Grazing</subject></subj-group></subj-group></subj-group></subj-group><subj-group subj-group-type="Discipline-v3"><subject>Earth Sciences</subject><subj-group><subject>Atmospheric Science</subject><subj-group><subject>Atmospheric Chemistry</subject><subj-group><subject>Greenhouse Gases</subject><subj-group><subject>Carbon Dioxide</subject></subj-group></subj-group></subj-group></subj-group></subj-group><subj-group subj-group-type="Discipline-v3"><subject>Physical Sciences</subject><subj-group><subject>Chemistry</subject><subj-group><subject>Environmental Chemistry</subject><subj-group><subject>Atmospheric Chemistry</subject><subj-group><subject>Greenhouse Gases</subject><subj-group><subject>Carbon Dioxide</subject></subj-group></subj-group></subj-group></subj-group></subj-group></subj-group><subj-group subj-group-type="Discipline-v3"><subject>Ecology and Environmental Sciences</subject><subj-group><subject>Environmental Chemistry</subject><subj-group><subject>Atmospheric Chemistry</subject><subj-group><subject>Greenhouse Gases</subject><subj-group><subject>Carbon Dioxide</subject></subj-group></subj-group></subj-group></subj-group></subj-group><subj-group subj-group-type="Discipline-v3"><subject>Physical Sciences</subject><subj-group><subject>Chemistry</subject><subj-group><subject>Chemical Compounds</subject><subj-group><subject>Carbon Dioxide</subject></subj-group></subj-group></subj-group></subj-group></article-categories><title-group><article-title>Potential to reduce greenhouse gas emissions through different dairy cattle systems in subtropical regions</article-title><alt-title alt-title-type="running-head">Greenhouse gas emissions through dairy cattle systems in subtropics</alt-title></title-group><contrib-group><contrib contrib-type="author"><contrib-id authenticated="true" contrib-id-type="orcid">http://orcid.org/0000-0002-4455-6866</contrib-id><name><surname>Ribeiro-Filho</surname><given-names>Henrique M. N.</given-names></name><role content-type="https://casrai.org/credit/">Conceptualization</role><role content-type="https://casrai.org/credit/">Formal analysis</role><role content-type="https://casrai.org/credit/">Methodology</role><role content-type="https://casrai.org/credit/">Writing &#x02013; original draft</role><xref ref-type="aff" rid="aff001"><sup>1</sup></xref><xref ref-type="aff" rid="aff002"><sup>2</sup></xref><xref ref-type="corresp" rid="cor001">*</xref></contrib><contrib contrib-type="author"><name><surname>Civiero</surname><given-names>Maur&#x000ed;cio</given-names></name><role content-type="https://casrai.org/credit/">Investigation</role><xref ref-type="aff" rid="aff002"><sup>2</sup></xref></contrib><contrib contrib-type="author"><name><surname>Kebreab</surname><given-names>Ermias</given-names></name><role content-type="https://casrai.org/credit/">Methodology</role><role content-type="https://casrai.org/credit/">Resources</role><role content-type="https://casrai.org/credit/">Supervision</role><role content-type="https://casrai.org/credit/">Writing &#x02013; review &#x00026; editing</role><xref ref-type="aff" rid="aff001"><sup>1</sup></xref></contrib></contrib-group><aff id="aff001"><label>1</label>
<addr-line>Department of Animal Science, University of California, Davis, California, United States of America</addr-line></aff><aff id="aff002"><label>2</label>
<addr-line>Programa de P&#x000f3;s-gradua&#x000e7;&#x000e3;o em Ci&#x000ea;ncia Animal, Universidade do Estado de Santa Catarina, Lages, Santa Catarina, Brazil</addr-line></aff><contrib-group><contrib contrib-type="editor"><name><surname>Sainju</surname><given-names>Upendra M.</given-names></name><role>Editor</role><xref ref-type="aff" rid="edit1"/></contrib></contrib-group><aff id="edit1"><addr-line>USDA Agricultural Research Service, UNITED STATES</addr-line></aff><author-notes><fn fn-type="COI-statement" id="coi001"><p><bold>Competing Interests: </bold>No authors have competing interests.</p></fn><corresp id="cor001">* E-mail: <email>henrique.ribeiro@udesc.br</email></corresp></author-notes><pub-date pub-type="epub"><day>18</day><month>6</month><year>2020</year></pub-date><pub-date pub-type="collection"><year>2020</year></pub-date><volume>15</volume><issue>6</issue><elocation-id>e0234687</elocation-id><history><date date-type="received"><day>18</day><month>3</month><year>2020</year></date><date date-type="accepted"><day>1</day><month>6</month><year>2020</year></date></history><permissions><license xlink:href="https://creativecommons.org/publicdomain/zero/1.0/"><license-p>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the <ext-link ext-link-type="uri" xlink:href="https://creativecommons.org/publicdomain/zero/1.0/">Creative Commons CC0</ext-link> public domain dedication.</license-p></license></permissions><self-uri content-type="pdf" xlink:href="pone.0234687.pdf"/><abstract><p>Carbon (C) footprint of dairy production, expressed in kg C dioxide (CO<sub>2</sub>) equivalents (CO<sub>2</sub>e) (kg energy-corrected milk (ECM))<sup>-1</sup>, encompasses emissions from feed production, diet management and total product output. The proportion of pasture on diets may affect all these factors, mainly in subtropical climate zones, where cows may access tropical and temperate pastures during warm and cold seasons, respectively. The aim of the study was to assess the C footprint of a dairy system with annual tropical and temperate pastures in a subtropical region. The system boundary included all processes up to the animal farm gate. Feed requirement during the entire life of each cow was based on data recorded from Holstein &#x000d7; Jersey cow herds producing an average of 7,000 kg ECM lactation<sup>-1</sup>. The milk production response as consequence of feed strategies (scenarios) was based on results from two experiments (warm and cold seasons) using lactating cows from the same herd. Three scenarios were evaluated: total mixed ration (TMR) <italic>ad libitum</italic> intake, 75, and 50% of <italic>ad libitum</italic> TMR intake with access to grazing either a tropical or temperate pasture during lactation periods. Considering IPCC and international literature values to estimate emissions from urine/dung, feed production and electricity, the C footprint was similar between scenarios, averaging 1.06 kg CO<sub>2</sub>e (kg ECM)<sup>-1</sup>. Considering factors from studies conducted in subtropical conditions and actual inputs for on-farm feed production, the C footprint decreased 0.04 kg CO<sub>2</sub>e (kg ECM)<sup>-1</sup> in scenarios including pastures compared to <italic>ad libitum</italic> TMR. Regardless of factors considered, emissions from feed production decreased as the proportion of pasture went up. In conclusion, decreasing TMR intake and including pastures in dairy cow diets in subtropical conditions have the potential to maintain or reduce the C footprint to a small extent.</p></abstract><funding-group><award-group id="award001"><funding-source><institution-wrap><institution-id institution-id-type="funder-id">http://dx.doi.org/10.13039/501100002322</institution-id><institution>Coordena&#x000e7;&#x000e3;o de Aperfei&#x000e7;oamento de Pessoal de N&#x000ed;vel Superior</institution></institution-wrap></funding-source><award-id>001</award-id><principal-award-recipient><contrib-id authenticated="true" contrib-id-type="orcid">http://orcid.org/0000-0002-4455-6866</contrib-id><name><surname>Ribeiro-Filho</surname><given-names>Henrique M. N.</given-names></name></principal-award-recipient></award-group><award-group id="award002"><funding-source><institution-wrap><institution-id institution-id-type="funder-id">http://dx.doi.org/10.13039/501100003593</institution-id><institution>Conselho Nacional de Desenvolvimento Cient&#x000ed;fico e Tecnol&#x000f3;gico</institution></institution-wrap></funding-source><award-id>403754/2016-0</award-id><principal-award-recipient><contrib-id authenticated="true" contrib-id-type="orcid">http://orcid.org/0000-0002-4455-6866</contrib-id><name><surname>Ribeiro-Filho</surname><given-names>Henrique M. N.</given-names></name></principal-award-recipient></award-group><award-group id="award003"><funding-source><institution-wrap><institution-id institution-id-type="funder-id">http://dx.doi.org/10.13039/501100005667</institution-id><institution>Funda&#x000e7;&#x000e3;o de Amparo &#x000e0; Pesquisa e Inova&#x000e7;&#x000e3;o do Estado de Santa Catarina</institution></institution-wrap></funding-source><award-id>TR 584 2019</award-id><principal-award-recipient><contrib-id authenticated="true" contrib-id-type="orcid">http://orcid.org/0000-0002-4455-6866</contrib-id><name><surname>Ribeiro-Filho</surname><given-names>Henrique M. N.</given-names></name></principal-award-recipient></award-group><funding-statement>HRF Grant number (Finance code) 001, Coordena&#x000e7;&#x000e3;o de Aperfei&#x000e7;oamento de Pessoal de N&#x000ed;vel Superior - Brazil (CAPES) <ext-link ext-link-type="uri" xlink:href="https://www.capes.gov.br">https://www.capes.gov.br</ext-link>; Grant number 403754/2016-0, Conselho Nacional de Desenvolvimento Cient&#x000ed;fico e Tecnol&#x000f3;gico - Brasil (CNPq) <ext-link ext-link-type="uri" xlink:href="http://www.cnpq.br">http://www.cnpq.br</ext-link>; Grant number TR 584 2019, Funda&#x000e7;&#x000e3;o de Amparo &#x000e0; Pesquisa e Inova&#x000e7;&#x000e3;o do Estado de Santa Catarina (FAPESC) <ext-link ext-link-type="uri" xlink:href="http://www.fapesc.sc.gov.br">http://www.fapesc.sc.gov.br</ext-link>. The funders had no role in study design, ata collection and analysis, decision to publish, or preparation of the manuscript.</funding-statement></funding-group><counts><fig-count count="4"/><table-count count="5"/><page-count count="18"/></counts><custom-meta-group><custom-meta id="data-availability"><meta-name>Data Availability</meta-name><meta-value>All relevant data are within the paper.</meta-value></custom-meta></custom-meta-group></article-meta><notes><title>Data Availability</title><p>All relevant data are within the paper.</p></notes></front><body><sec sec-type="intro" id="sec001"><title>Introduction</title><p>Greenhouse gas (GHG) emissions from livestock activities represent 10&#x02013;12% of global emissions [<xref rid="pone.0234687.ref001" ref-type="bibr">1</xref>], ranging from 5.5&#x02013;7.5 Gt CO<sub>2</sub> equivalents (CO<sub>2</sub>e) yr<sup>-1</sup>, with almost 30% coming from dairy cattle production systems [<xref rid="pone.0234687.ref002" ref-type="bibr">2</xref>]. However, the livestock sector supply between 13 and 17% of calories and between 28 and 33% of human edible protein consumption globally [<xref rid="pone.0234687.ref003" ref-type="bibr">3</xref>]. Additionally, livestock produce more human-edible protein per unit area than crops when land is unsuitable for food crop production [<xref rid="pone.0234687.ref004" ref-type="bibr">4</xref>].</p><p>Considering the key role of livestock systems in global food security, several technical and management interventions have been investigated to mitigate methane (CH<sub>4</sub>) emissions from enteric fermentation [<xref rid="pone.0234687.ref005" ref-type="bibr">5</xref>], animal management [<xref rid="pone.0234687.ref006" ref-type="bibr">6</xref>] and manure management [<xref rid="pone.0234687.ref007" ref-type="bibr">7</xref>]. CH<sub>4</sub> emissions from enteric fermentation represents around 34% of total emissions from livestock sector, which is the largest source [<xref rid="pone.0234687.ref002" ref-type="bibr">2</xref>]. Increasing proportions of concentrate and digestibility of forages in the diet have been proposed as mitigation strategies [<xref rid="pone.0234687.ref001" ref-type="bibr">1</xref>,<xref rid="pone.0234687.ref005" ref-type="bibr">5</xref>]. In contrast, some life cycle assessment (LCA) studies of dairy systems in temperate regions [<xref rid="pone.0234687.ref008" ref-type="bibr">8</xref>&#x02013;<xref rid="pone.0234687.ref011" ref-type="bibr">11</xref>] have identified that increasing concentrate proportion may increase carbon (C) footprint due to greater resource use and pollutants from the production of feed compared to forage. Thus, increasing pasture proportion on dairy cattle systems may be an alternative management to mitigate the C footprint.</p><p>In subtropical climate zones, cows may graze tropical pastures rather than temperate pastures during the warm season [<xref rid="pone.0234687.ref012" ref-type="bibr">12</xref>]. Some important dairy production areas, such as southern Brazil, central to northern Argentina, Uruguay, South Africa, New Zealand and Australia, are located in these climate zones, having more than 900 million ha in native, permanent or temporary pastures, producing almost 20% of global milk production [<xref rid="pone.0234687.ref013" ref-type="bibr">13</xref>]. However, due to a considerable inter-annual variation in pasture growth rates [<xref rid="pone.0234687.ref014" ref-type="bibr">14</xref>,<xref rid="pone.0234687.ref015" ref-type="bibr">15</xref>], the interest in mixed systems, using total mixed ration (TMR) + pasture has been increasing [<xref rid="pone.0234687.ref016" ref-type="bibr">16</xref>]. Nevertheless, to our best knowledge, studies conducted to evaluate milk production response in dairy cow diets receiving TMR and pastures have only been conducted in temperate pastures and not in tropical pastures (e.g. [<xref rid="pone.0234687.ref017" ref-type="bibr">17</xref>&#x02013;<xref rid="pone.0234687.ref019" ref-type="bibr">19</xref>]).</p><p>It has been shown that dairy cows receiving TMR-based diets may not decrease milk production when supplemented with temperate pastures in a vegetative growth stage [<xref rid="pone.0234687.ref018" ref-type="bibr">18</xref>]. On the other hand, tropical pastures have lower organic matter digestibility and cows experience reduced dry matter (DM) intake and milk yield compared to temperate pastures [<xref rid="pone.0234687.ref020" ref-type="bibr">20</xref>,<xref rid="pone.0234687.ref021" ref-type="bibr">21</xref>]. A lower milk yield increases the C footprint intensity [<xref rid="pone.0234687.ref022" ref-type="bibr">22</xref>], offsetting an expected advantage through lower GHG emissions from crop and reduced DM intake.</p><p>The aim of this work was to quantify the C footprint and land use of dairy systems using cows with a medium milk production potential in a subtropical region. The effect of replacing total mixed ration (TMR) with pastures during lactation periods was evaluated.</p></sec><sec sec-type="materials|methods" id="sec002"><title>Materials and methods</title><p>An LCA was developed according to the ISO standards [<xref rid="pone.0234687.ref023" ref-type="bibr">23</xref>,<xref rid="pone.0234687.ref024" ref-type="bibr">24</xref>] and Food and Agriculture Organization of the United Nations (FAO) Livestock Environmental Assessment Protocol guidelines [<xref rid="pone.0234687.ref025" ref-type="bibr">25</xref>]. All procedures were approved by the &#x02018;Comiss&#x000e3;o de &#x000c9;tica no Uso de Animais&#x02019; (CEUA/UDESC) on September 15, 2016&#x02014;Approval number 4373090816 - <ext-link ext-link-type="uri" xlink:href="https://www.udesc.br/cav/ceua">https://www.udesc.br/cav/ceua</ext-link>.</p><sec id="sec003"><title>System boundary</title><p>The goal of the study was to assess the C footprint of annual tropical and temperate pastures in lactating dairy cow diets. The production system was divided into four main processes: (i) animal husbandry, (ii) manure management and urine and dung deposited by grazing animals, (iii) production of feed ingredients and (iv) farm management (<xref ref-type="fig" rid="pone.0234687.g001">Fig 1</xref>). The study boundary included all processes up to the animal farm gate (cradle to gate), including secondary sources such as GHG emissions during the production of fuel, electricity, machinery, manufacturing of fertilizer, pesticides, seeds and plastic used in silage production. Fuel combustion and machinery (manufacture and repairs) for manure handling and electricity for milking and confinement were accounted as emissions from farm management. Emissions post milk production were assumed to be similar for all scenarios, therefore, activities including milk processing, distribution, retail or consumption were outside of the system boundary.</p><fig id="pone.0234687.g001" orientation="portrait" position="float"><object-id pub-id-type="doi">10.1371/journal.pone.0234687.g001</object-id><label>Fig 1</label><caption><title>Overview of the milk production system boundary considered in the study.</title></caption><graphic xlink:href="pone.0234687.g001"/></fig></sec><sec id="sec004"><title>Functional unit</title><p>The functional unit was one kilogram of energy-corrected milk (ECM) at the farm gate. All processes in the system were calculated based on one kilogram ECM. The ECM was calculated by multiplying milk production by the ratio of the energy content of the milk to the energy content of standard milk with 4% fat and 3.3% true protein according to NRC [<xref rid="pone.0234687.ref020" ref-type="bibr">20</xref>] as follows:</p><p>ECM = Milk production &#x000d7; (0.0929 &#x000d7; fat% + 0.0588&#x000d7; true protein% + 0.192) / (0.0929 &#x000d7; (4%) + 0.0588 &#x000d7; (3.3%) + 0.192), where fat% and protein% are fat and protein percentages in milk, respectively. The average milk production and composition were recorded from the University of Santa Catarina State (Brazil) herd, considering 165 lactations between 2009 and 2018. The herd is predominantly Holstein &#x000d7; Jersey cows, with key characteristics described in <xref rid="pone.0234687.t001" ref-type="table">Table 1</xref>.</p><table-wrap id="pone.0234687.t001" orientation="portrait" position="float"><object-id pub-id-type="doi">10.1371/journal.pone.0234687.t001</object-id><label>Table 1</label><caption><title>Descriptive characteristics of the herd.</title></caption><alternatives><graphic id="pone.0234687.t001g" xlink:href="pone.0234687.t001"/><table frame="hsides" rules="groups"><colgroup span="1"><col align="left" valign="middle" span="1"/><col align="left" valign="middle" span="1"/><col align="left" valign="middle" span="1"/></colgroup><thead><tr><th align="center" rowspan="1" colspan="1">Item</th><th align="center" rowspan="1" colspan="1">Unit</th><th align="center" rowspan="1" colspan="1">Average</th></tr></thead><tbody><tr><td align="left" rowspan="1" colspan="1">Milking cows</td><td align="center" rowspan="1" colspan="1">#</td><td align="center" rowspan="1" colspan="1">165</td></tr><tr><td align="left" rowspan="1" colspan="1">Milk production</td><td align="center" rowspan="1" colspan="1">kg year<sup>-1</sup></td><td align="center" rowspan="1" colspan="1">7,015</td></tr><tr><td align="left" rowspan="1" colspan="1">Milk fat</td><td align="center" rowspan="1" colspan="1">%</td><td align="center" rowspan="1" colspan="1">4.0</td></tr><tr><td align="left" rowspan="1" colspan="1">Milk protein</td><td align="center" rowspan="1" colspan="1">%</td><td align="center" rowspan="1" colspan="1">3.3</td></tr><tr><td align="left" rowspan="1" colspan="1">Length of lactation</td><td align="center" rowspan="1" colspan="1">days</td><td align="center" rowspan="1" colspan="1">305</td></tr><tr><td align="left" rowspan="1" colspan="1">Body weight</td><td align="center" rowspan="1" colspan="1">kg</td><td align="center" rowspan="1" colspan="1">553</td></tr><tr><td align="left" rowspan="1" colspan="1">Lactations per cow</td><td align="center" rowspan="1" colspan="1">#</td><td align="center" rowspan="1" colspan="1">4</td></tr><tr><td align="left" rowspan="1" colspan="1">Replacement rate</td><td align="center" rowspan="1" colspan="1">%</td><td align="center" rowspan="1" colspan="1">25</td></tr><tr><td align="left" rowspan="1" colspan="1">Cull rate</td><td align="center" rowspan="1" colspan="1">%</td><td align="center" rowspan="1" colspan="1">25</td></tr><tr><td align="left" rowspan="1" colspan="1">First artificial insemination</td><td align="center" rowspan="1" colspan="1">months</td><td align="center" rowspan="1" colspan="1">16</td></tr><tr><td align="left" rowspan="1" colspan="1">Weaned</td><td align="center" rowspan="1" colspan="1">days</td><td align="center" rowspan="1" colspan="1">60</td></tr><tr><td align="left" rowspan="1" colspan="1">Mortality</td><td align="center" rowspan="1" colspan="1">%</td><td align="center" rowspan="1" colspan="1">3.0</td></tr></tbody></table></alternatives></table-wrap></sec><sec id="sec005"><title>Data sources and livestock system description</title><p>The individual feed requirements, as well as the milk production responses based on feed strategies were based on data recorded from the herd described above and two experiments performed using lactating cows from the same herd. Due to the variation on herbage production throughout the year, feed requirements were estimated taking into consideration that livestock systems have a calving period in April, which represents the beginning of fall season in the southern Hemisphere. The experiments have shown a 10% reduction in ECM production in dairy cows that received both 75 and 50% of <italic>ad libitum</italic> TMR intake with access to grazing a tropical pasture (pearl-millet, <italic>Pennisetum glaucum</italic> &#x02018;Campeiro&#x02019;) compared to cows receiving <italic>ad libitum</italic> TMR intake. Cows grazing on a temperate pasture (ryegrass, <italic>Lolium multiflorum</italic> &#x02018;Maximus&#x02019;) did not need changes to ECM production compared to the <italic>ad libitum</italic> TMR intake group.</p><p>Using experimental data, three scenarios were evaluated during the lactation period: <italic>ad libitum</italic> TMR intake, and 75, and 50% of <italic>ad libitum</italic> TMR intake with access to grazing either an annual tropical or temperate pasture as a function of month ([<xref rid="pone.0234687.ref026" ref-type="bibr">26</xref>], Civiero et al., <italic>in press</italic>). From April to October (210 days) cows accessed an annual temperate pasture (ryegrass), and from November to beginning of February (95 days) cows grazed an annual tropical pasture (pearl-millet). The average annual reduction in ECM production in dairy cows with access to pastures is 3%. This value was assumed during an entire lactation period.</p></sec><sec id="sec006"><title>Impact assessment</title><p>The CO<sub>2</sub>e emissions were calculated by multiplying the emissions of CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O by their 100-year global warming potential (GWP<sub>100</sub>), based on IPCC assessment report 5 (AR5; [<xref rid="pone.0234687.ref027" ref-type="bibr">27</xref>]). The values of GWP<sub>100</sub> are 1, 28 and 265 for CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O, respectively.</p></sec><sec id="sec007"><title>Feed production</title><sec id="sec008"><title>Diets composition</title><p>The DM intake of each ingredient throughout the entire life of animals during lactation periods was calculated for each scenario: cows receiving only TMR, cows receiving 75% of TMR with annual pastures and cows receiving 50% of TMR with annual pastures (<xref rid="pone.0234687.t002" ref-type="table">Table 2</xref>). In each of other phases of life (calf, heifer, dry cow), animals received the same diet, including a perennial tropical pasture (kikuyu grass, <italic>Pennisetum clandestinum</italic>). The DM intake of calves, heifers and dry cows was calculated assuming 2.8, 2.5 and 1.9% body weight, respectively [<xref rid="pone.0234687.ref020" ref-type="bibr">20</xref>]. In each case, the actual DM intake of concentrate and corn silage was recorded, and pasture DM intake was estimated by the difference between daily expected DM intake and actual DM intake of concentrate and corn silage. For lactating heifers and cows, TMR was formulated to meet the net energy for lactation (NE<sub>L</sub>) and metabolizable protein (MP) requirements of experimental animals, according to [<xref rid="pone.0234687.ref028" ref-type="bibr">28</xref>]. The INRA system was used because it is possible to estimate pasture DM intake taking into account the TMR intake, pasture management and the time of access to pasture using the GrazeIn model [<xref rid="pone.0234687.ref029" ref-type="bibr">29</xref>], which was integrated in the software INRAtion 4.07 (<ext-link ext-link-type="uri" xlink:href="https://www.inration.educagri.fr/fr/forum.php">https://www.inration.educagri.fr/fr/forum.php</ext-link>). The nutrient intake was calculated as a product of TMR and pasture intake and the nutrient contents of TMR and pasture, respectively, which were determined in feed samples collected throughout the experiments.</p><table-wrap id="pone.0234687.t002" orientation="portrait" position="float"><object-id pub-id-type="doi">10.1371/journal.pone.0234687.t002</object-id><label>Table 2</label><caption><title>Dairy cows&#x02019; diets in different scenarios<xref ref-type="table-fn" rid="t002fn001"><sup>a</sup></xref>.</title></caption><alternatives><graphic id="pone.0234687.t002g" xlink:href="pone.0234687.t002"/><table frame="hsides" rules="groups"><colgroup span="1"><col align="left" valign="middle" span="1"/><col align="left" valign="middle" span="1"/><col align="left" valign="middle" span="1"/><col align="left" valign="middle" span="1"/><col align="left" valign="middle" span="1"/><col align="left" valign="middle" span="1"/><col align="left" valign="middle" span="1"/><col align="left" valign="middle" span="1"/><col align="left" valign="middle" span="1"/><col align="left" valign="middle" span="1"/><col align="left" valign="middle" span="1"/></colgroup><thead><tr><th align="left" rowspan="1" colspan="1"/><th align="center" colspan="2" rowspan="1">Calf</th><th align="center" colspan="2" rowspan="1">Pregnant/dry</th><th align="center" colspan="3" rowspan="1">Lactation</th><th align="center" colspan="3" rowspan="1">Weighted average</th></tr><tr><th align="left" rowspan="1" colspan="1"/><th align="center" rowspan="1" colspan="1">0&#x02013;12 mo</th><th align="center" rowspan="1" colspan="1">12-AI mo</th><th align="center" rowspan="1" colspan="1">Heifer</th><th align="center" rowspan="1" colspan="1">Cow</th><th align="center" rowspan="1" colspan="1">TMR</th><th align="center" rowspan="1" colspan="1">TMR75</th><th align="center" rowspan="1" colspan="1">TMR50</th><th align="center" rowspan="1" colspan="1">TMR</th><th align="center" rowspan="1" colspan="1">TMR75</th><th align="center" rowspan="1" colspan="1">TMR50</th></tr></thead><tbody><tr><td align="left" rowspan="1" colspan="1">Days</td><td align="center" rowspan="1" colspan="1">360</td><td align="center" rowspan="1" colspan="1">120</td><td align="center" rowspan="1" colspan="1">270</td><td align="center" rowspan="1" colspan="1">180</td><td align="center" rowspan="1" colspan="1">1220</td><td align="center" rowspan="1" colspan="1">1220</td><td align="center" rowspan="1" colspan="1">1220</td><td align="center" rowspan="1" colspan="1"/><td align="center" rowspan="1" colspan="1"/><td align="center" rowspan="1" colspan="1"/></tr><tr><td align="left" rowspan="1" colspan="1">DM intake, kg d<sup>-1</sup></td><td align="center" rowspan="1" colspan="1">3.35</td><td align="center" rowspan="1" colspan="1">6.90</td><td align="center" rowspan="1" colspan="1">10.4</td><td align="center" rowspan="1" colspan="1">11.0</td><td align="center" rowspan="1" colspan="1">18.7</td><td align="center" rowspan="1" colspan="1">17.2</td><td align="center" rowspan="1" colspan="1">17.0</td><td align="center" rowspan="1" colspan="1">13.8</td><td align="center" rowspan="1" colspan="1">12.9</td><td align="center" rowspan="1" colspan="1">12.8</td></tr><tr><td align="left" colspan="11" rowspan="1">Ingredients, g (kg DM)<sup>-1</sup></td></tr><tr><td align="left" rowspan="1" colspan="1">&#x000a0;&#x000a0;&#x000a0;&#x000a0;Ground corn</td><td align="center" rowspan="1" colspan="1">309</td><td align="center" rowspan="1" colspan="1">145</td><td align="center" rowspan="1" colspan="1">96.3</td><td align="center" rowspan="1" colspan="1">-</td><td align="center" rowspan="1" colspan="1">257</td><td align="center" rowspan="1" colspan="1">195</td><td align="center" rowspan="1" colspan="1">142</td><td align="center" rowspan="1" colspan="1">218</td><td align="center" rowspan="1" colspan="1">183</td><td align="center" rowspan="1" colspan="1">153</td></tr><tr><td align="left" rowspan="1" colspan="1">&#x000a0;&#x000a0;&#x000a0;&#x000a0;Soybean meal</td><td align="center" rowspan="1" colspan="1">138</td><td align="center" rowspan="1" colspan="1">22</td><td align="center" rowspan="1" colspan="1">26.7</td><td align="center" rowspan="1" colspan="1">-</td><td align="center" rowspan="1" colspan="1">143</td><td align="center" rowspan="1" colspan="1">105</td><td align="center" rowspan="1" colspan="1">76.1</td><td align="center" rowspan="1" colspan="1">109</td><td align="center" rowspan="1" colspan="1">88.0</td><td align="center" rowspan="1" colspan="1">71.0</td></tr><tr><td align="left" rowspan="1" colspan="1">&#x000a0;&#x000a0;&#x000a0;&#x000a0;Corn silage</td><td align="center" rowspan="1" colspan="1">149</td><td align="center" rowspan="1" colspan="1">290</td><td align="center" rowspan="1" colspan="1">85.6</td><td align="center" rowspan="1" colspan="1">-</td><td align="center" rowspan="1" colspan="1">601</td><td align="center" rowspan="1" colspan="1">451</td><td align="center" rowspan="1" colspan="1">326</td><td align="center" rowspan="1" colspan="1">393</td><td align="center" rowspan="1" colspan="1">308</td><td align="center" rowspan="1" colspan="1">237</td></tr><tr><td align="left" rowspan="1" colspan="1">&#x000a0;&#x000a0;&#x000a0;&#x000a0;Ann temperate pasture</td><td align="center" rowspan="1" colspan="1">184</td><td align="center" rowspan="1" colspan="1">326</td><td align="center" rowspan="1" colspan="1">257</td><td align="center" rowspan="1" colspan="1">-</td><td align="center" rowspan="1" colspan="1">-</td><td align="center" rowspan="1" colspan="1">185</td><td align="center" rowspan="1" colspan="1">337</td><td align="center" rowspan="1" colspan="1">81.3</td><td align="center" rowspan="1" colspan="1">186</td><td align="center" rowspan="1" colspan="1">273</td></tr><tr><td align="left" rowspan="1" colspan="1">&#x000a0;&#x000a0;&#x000a0;&#x000a0;Ann tropical pasture</td><td align="center" rowspan="1" colspan="1">-</td><td align="center" rowspan="1" colspan="1">-</td><td align="center" rowspan="1" colspan="1">107</td><td align="center" rowspan="1" colspan="1">-</td><td align="center" rowspan="1" colspan="1">-</td><td align="center" rowspan="1" colspan="1">63</td><td align="center" rowspan="1" colspan="1">119</td><td align="center" rowspan="1" colspan="1">13.4</td><td align="center" rowspan="1" colspan="1">49.1</td><td align="center" rowspan="1" colspan="1">81.0</td></tr><tr><td align="left" rowspan="1" colspan="1">&#x000a0;&#x000a0;&#x000a0;&#x000a0;Perenn tropical pasture</td><td align="center" rowspan="1" colspan="1">219</td><td align="center" rowspan="1" colspan="1">217</td><td align="center" rowspan="1" colspan="1">428</td><td align="center" rowspan="1" colspan="1">1000</td><td align="center" rowspan="1" colspan="1">-</td><td align="center" rowspan="1" colspan="1">-</td><td align="center" rowspan="1" colspan="1">-</td><td align="center" rowspan="1" colspan="1">186</td><td align="center" rowspan="1" colspan="1">186</td><td align="center" rowspan="1" colspan="1">186</td></tr><tr><td align="left" colspan="11" rowspan="1">Chemical composition, g (kg DM)<sup>-1</sup></td></tr><tr><td align="left" rowspan="1" colspan="1">&#x000a0;&#x000a0;&#x000a0;&#x000a0;Organic matter</td><td align="center" rowspan="1" colspan="1">935</td><td align="center" rowspan="1" colspan="1">924</td><td align="center" rowspan="1" colspan="1">913</td><td align="center" rowspan="1" colspan="1">916</td><td align="center" rowspan="1" colspan="1">958</td><td align="center" rowspan="1" colspan="1">939</td><td align="center" rowspan="1" colspan="1">924</td><td align="center" rowspan="1" colspan="1">943</td><td align="center" rowspan="1" colspan="1">932</td><td align="center" rowspan="1" colspan="1">924</td></tr><tr><td align="left" rowspan="1" colspan="1">&#x000a0;&#x000a0;&#x000a0;&#x000a0;Crude protein</td><td align="center" rowspan="1" colspan="1">216</td><td align="center" rowspan="1" colspan="1">183</td><td align="center" rowspan="1" colspan="1">213</td><td align="center" rowspan="1" colspan="1">200</td><td align="center" rowspan="1" colspan="1">150</td><td align="center" rowspan="1" colspan="1">170</td><td align="center" rowspan="1" colspan="1">198</td><td align="center" rowspan="1" colspan="1">175</td><td align="center" rowspan="1" colspan="1">186</td><td align="center" rowspan="1" colspan="1">202</td></tr><tr><td align="left" rowspan="1" colspan="1">&#x000a0;&#x000a0;&#x000a0;&#x000a0;Neutral detergent fibre</td><td align="center" rowspan="1" colspan="1">299</td><td align="center" rowspan="1" colspan="1">479</td><td align="center" rowspan="1" colspan="1">518</td><td align="center" rowspan="1" colspan="1">625</td><td align="center" rowspan="1" colspan="1">382</td><td align="center" rowspan="1" colspan="1">418</td><td align="center" rowspan="1" colspan="1">449</td><td align="center" rowspan="1" colspan="1">411</td><td align="center" rowspan="1" colspan="1">431</td><td align="center" rowspan="1" colspan="1">449</td></tr><tr><td align="left" rowspan="1" colspan="1">&#x000a0;&#x000a0;&#x000a0;&#x000a0;Acid detergent fibre</td><td align="center" rowspan="1" colspan="1">127</td><td align="center" rowspan="1" colspan="1">203</td><td align="center" rowspan="1" colspan="1">234</td><td align="center" rowspan="1" colspan="1">306</td><td align="center" rowspan="1" colspan="1">152</td><td align="center" rowspan="1" colspan="1">171</td><td align="center" rowspan="1" colspan="1">187</td><td align="center" rowspan="1" colspan="1">174</td><td align="center" rowspan="1" colspan="1">185</td><td align="center" rowspan="1" colspan="1">194</td></tr><tr><td align="left" rowspan="1" colspan="1">&#x000a0;&#x000a0;&#x000a0;&#x000a0;Ether extract</td><td align="center" rowspan="1" colspan="1">46.5</td><td align="center" rowspan="1" colspan="1">30.4</td><td align="center" rowspan="1" colspan="1">28.6</td><td align="center" rowspan="1" colspan="1">25.0</td><td align="center" rowspan="1" colspan="1">31.8</td><td align="center" rowspan="1" colspan="1">31.1</td><td align="center" rowspan="1" colspan="1">30.4</td><td align="center" rowspan="1" colspan="1">33.2</td><td align="center" rowspan="1" colspan="1">32.8</td><td align="center" rowspan="1" colspan="1">32.4</td></tr><tr><td align="left" colspan="11" rowspan="1">Nutritive value</td></tr><tr><td align="left" rowspan="1" colspan="1">&#x000a0;&#x000a0;&#x000a0;&#x000a0;OM digestibility, %</td><td align="center" rowspan="1" colspan="1">82.1</td><td align="center" rowspan="1" colspan="1">77.9</td><td align="center" rowspan="1" colspan="1">77.1</td><td align="center" rowspan="1" colspan="1">71.9</td><td align="center" rowspan="1" colspan="1">72.4</td><td align="center" rowspan="1" colspan="1">75.0</td><td align="center" rowspan="1" colspan="1">77.2</td><td align="center" rowspan="1" colspan="1">74.8</td><td align="center" rowspan="1" colspan="1">76.3</td><td align="center" rowspan="1" colspan="1">77.6</td></tr><tr><td align="left" rowspan="1" colspan="1">&#x000a0;&#x000a0;&#x000a0;&#x000a0;NE<sub>L</sub>, Mcal (kg DM)<sup>-1</sup></td><td align="center" rowspan="1" colspan="1">1.96</td><td align="center" rowspan="1" colspan="1">1.69</td><td align="center" rowspan="1" colspan="1">1.63</td><td align="center" rowspan="1" colspan="1">1.44</td><td align="center" rowspan="1" colspan="1">1.81</td><td align="center" rowspan="1" colspan="1">1.78</td><td align="center" rowspan="1" colspan="1">1.74</td><td align="center" rowspan="1" colspan="1">1.8</td><td align="center" rowspan="1" colspan="1">1.8</td><td align="center" rowspan="1" colspan="1">1.7</td></tr><tr><td align="left" rowspan="1" colspan="1">&#x000a0;&#x000a0;&#x000a0;&#x000a0;MP, g (kg DM)<sup>-1</sup></td><td align="center" rowspan="1" colspan="1">111</td><td align="center" rowspan="1" colspan="1">93.6</td><td align="center" rowspan="1" colspan="1">97.6</td><td align="center" rowspan="1" colspan="1">90.0</td><td align="center" rowspan="1" colspan="1">95.0</td><td align="center" rowspan="1" colspan="1">102</td><td align="center" rowspan="1" colspan="1">102</td><td align="center" rowspan="1" colspan="1">97.5</td><td align="center" rowspan="1" colspan="1">102</td><td align="center" rowspan="1" colspan="1">101</td></tr></tbody></table></alternatives><table-wrap-foot><fn id="t002fn001"><p><sup>a</sup>AI, artificial insemination; TMR, cows receiving exclusively total mixed ration; TMR75, cows receiving 75% of total mixed ration with pasture; TMR50, cows receiving 50% of total mixed ration with pasture; NE<sub>L</sub>, net energy for lactation; MP, metabolizable protein.</p></fn></table-wrap-foot></table-wrap></sec><sec id="sec009"><title>GHG emissions from crop and pasture production</title><p>GHG emission factors used for off- and on-farm feed production were based on literature values, and are presented in <xref rid="pone.0234687.t003" ref-type="table">Table 3</xref>. The emission factor used for corn grain is the average of emission factors observed in different levels of synthetic N fertilization [<xref rid="pone.0234687.ref030" ref-type="bibr">30</xref>]. The emission factor used for soybean is based on Brazilian soybean production [<xref rid="pone.0234687.ref031" ref-type="bibr">31</xref>]. The emissions used for corn silage, including feed processing (cutting, crushing and mixing), and annual or perennial grass productions were 3300 and 1500 kg CO<sub>2</sub>e ha<sup>-1</sup>, respectively [<xref rid="pone.0234687.ref032" ref-type="bibr">32</xref>]. The DM production (kg ha<sup>-1</sup>) of corn silage and pastures were based on regional and locally recorded data [<xref rid="pone.0234687.ref033" ref-type="bibr">33</xref>&#x02013;<xref rid="pone.0234687.ref036" ref-type="bibr">36</xref>], assuming that animals are able to consume 70% of pastures during grazing.</p><table-wrap id="pone.0234687.t003" orientation="portrait" position="float"><object-id pub-id-type="doi">10.1371/journal.pone.0234687.t003</object-id><label>Table 3</label><caption><title>GHG emission factors for Off- and On-farm feed production.</title></caption><alternatives><graphic id="pone.0234687.t003g" xlink:href="pone.0234687.t003"/><table frame="hsides" rules="groups"><colgroup span="1"><col align="left" valign="middle" span="1"/><col align="left" valign="middle" span="1"/><col align="left" valign="middle" span="1"/><col align="left" valign="middle" span="1"/><col align="left" valign="middle" span="1"/></colgroup><thead><tr><th align="center" rowspan="1" colspan="1">Feed</th><th align="center" rowspan="1" colspan="1">DM yield (kg ha<sup>-1</sup>)</th><th align="center" rowspan="1" colspan="1">Emission factor</th><th align="center" rowspan="1" colspan="1">Unit<xref ref-type="table-fn" rid="t003fn001"><sup>a</sup></xref></th><th align="center" rowspan="1" colspan="1">References</th></tr></thead><tbody><tr><td align="justify" rowspan="1" colspan="1">Off-farm</td><td align="justify" rowspan="1" colspan="1"/><td align="justify" rowspan="1" colspan="1"/><td align="justify" rowspan="1" colspan="1"/><td align="justify" rowspan="1" colspan="1"/></tr><tr><td align="justify" rowspan="1" colspan="1">&#x000a0;&#x000a0;&#x000a0;&#x000a0;Corn grain</td><td align="center" rowspan="1" colspan="1">7,500</td><td align="center" rowspan="1" colspan="1">0.316</td><td align="center" rowspan="1" colspan="1">kg CO<sub>2</sub>e (kg grain)<sup>-1</sup></td><td align="center" rowspan="1" colspan="1">[<xref rid="pone.0234687.ref030" ref-type="bibr">30</xref>]</td></tr><tr><td align="justify" rowspan="1" colspan="1">&#x000a0;&#x000a0;&#x000a0;&#x000a0;Soybean</td><td align="center" rowspan="1" colspan="1">2,200</td><td align="center" rowspan="1" colspan="1">0.186</td><td align="center" rowspan="1" colspan="1">kg CO<sub>2</sub>e (kg grain)<sup>-1</sup></td><td align="center" rowspan="1" colspan="1">[<xref rid="pone.0234687.ref031" ref-type="bibr">31</xref>]</td></tr><tr><td align="justify" rowspan="1" colspan="1">On-farm</td><td align="center" rowspan="1" colspan="1"/><td align="center" rowspan="1" colspan="1"/><td align="center" rowspan="1" colspan="1"/><td align="center" rowspan="1" colspan="1"/></tr><tr><td align="justify" rowspan="1" colspan="1">&#x000a0;&#x000a0;&#x000a0;&#x000a0;Corn silage<xref ref-type="table-fn" rid="t003fn002"><sup>b</sup></xref></td><td align="center" rowspan="1" colspan="1">16,000</td><td align="center" rowspan="1" colspan="1">0.206</td><td align="center" rowspan="1" colspan="1">kg CO<sub>2</sub>e (kg DM)<sup>-1</sup></td><td align="center" rowspan="1" colspan="1">[<xref rid="pone.0234687.ref032" ref-type="bibr">32</xref>,<xref rid="pone.0234687.ref033" ref-type="bibr">33</xref>]</td></tr><tr><td align="justify" rowspan="1" colspan="1">&#x000a0;&#x000a0;&#x000a0;&#x000a0;Annual ryegrass<xref ref-type="table-fn" rid="t003fn003"><sup>c</sup></xref></td><td align="center" rowspan="1" colspan="1">9,500</td><td align="center" rowspan="1" colspan="1">0.226</td><td align="center" rowspan="1" colspan="1">kg CO<sub>2</sub>e (kg DM)<sup>-1</sup></td><td align="center" rowspan="1" colspan="1">[<xref rid="pone.0234687.ref032" ref-type="bibr">32</xref>,<xref rid="pone.0234687.ref034" ref-type="bibr">34</xref>]</td></tr><tr><td align="justify" rowspan="1" colspan="1">&#x000a0;&#x000a0;&#x000a0;&#x000a0;Pearl millet<xref ref-type="table-fn" rid="t003fn003"><sup>d</sup></xref></td><td align="center" rowspan="1" colspan="1">11,000</td><td align="center" rowspan="1" colspan="1">0.195</td><td align="center" rowspan="1" colspan="1">kg CO<sub>2</sub>e (kg DM)<sup>-1</sup></td><td align="center" rowspan="1" colspan="1">[<xref rid="pone.0234687.ref032" ref-type="bibr">32</xref>,<xref rid="pone.0234687.ref035" ref-type="bibr">35</xref>]</td></tr><tr><td align="justify" rowspan="1" colspan="1">&#x000a0;&#x000a0;&#x000a0;&#x000a0;Kikuyu grass<xref ref-type="table-fn" rid="t003fn003"><sup>e</sup></xref></td><td align="center" rowspan="1" colspan="1">9,500</td><td align="center" rowspan="1" colspan="1">0.226</td><td align="center" rowspan="1" colspan="1">kg CO<sub>2</sub>e (kg DM)<sup>-1</sup></td><td align="center" rowspan="1" colspan="1">[<xref rid="pone.0234687.ref032" ref-type="bibr">32</xref>,<xref rid="pone.0234687.ref036" ref-type="bibr">36</xref>]</td></tr></tbody></table></alternatives><table-wrap-foot><fn id="t003fn001"><p><sup>a</sup>CO<sub>2</sub>e, carbon dioxide equivalent.</p></fn><fn id="t003fn002"><p><sup>b</sup>Emission factor estimated as [kg CO<sub>2</sub>e ha<sup>-1</sup>: kg DM ha<sup>-1</sup>].</p></fn><fn id="t003fn003"><p><sup>c,d,e</sup>Emission factors estimated as [kg CO<sub>2</sub>e ha<sup>-1</sup>: kg DM ha<sup>-1</sup> &#x000d7; 0.7], assuming that animals are able to consume 70% of pasture during grazing.</p></fn></table-wrap-foot></table-wrap><p>Emissions from on-farm feed production (corn silage and pasture) were estimated using primary and secondary sources based on the actual amount of each input (<xref rid="pone.0234687.t004" ref-type="table">Table 4</xref>). Primary sources were direct and indirect N<sub>2</sub>O-N emissions from organic and synthetic fertilizers and crop/pasture residues, CO<sub>2</sub>-C emissions from lime and urea applications, as well as fuel combustion. The direct N<sub>2</sub>O-N emission factor (kg (kg N input)<sup>-1</sup>) is based on a local study performed previously [<xref rid="pone.0234687.ref037" ref-type="bibr">37</xref>]. For indirect N<sub>2</sub>O-N emissions (kg N<sub>2</sub>O-N (kg NH<sub>3</sub>-N + NO<sub>x</sub>)<sup>-1</sup>), as well as CO<sub>2</sub>-C emissions from lime + urea, default values proposed by IPCC [<xref rid="pone.0234687.ref038" ref-type="bibr">38</xref>] were used. For perennial pastures, a C sequestration of 0.57 t ha<sup>-1</sup> was used based on a 9-year study conducted in southern Brazil [<xref rid="pone.0234687.ref039" ref-type="bibr">39</xref>]. Due to the use of conventional tillage, no C sequestration was considered for annual pastures. The amount of fuel required was 8.9 (no-tillage) and 14.3 L ha<sup>-1</sup> (disking) for annual tropical and temperate pastures, respectively [<xref rid="pone.0234687.ref040" ref-type="bibr">40</xref>]. The CO<sub>2</sub> from fuel combustion was 2.7 kg CO<sub>2</sub> L<sup>-1</sup> [<xref rid="pone.0234687.ref041" ref-type="bibr">41</xref>]. Secondary sources of emissions during the production of fuel, machinery, fertilizer, pesticides, seeds and plastic for ensilage were estimated using emission factors described by Rotz et al. [<xref rid="pone.0234687.ref042" ref-type="bibr">42</xref>].</p><table-wrap id="pone.0234687.t004" orientation="portrait" position="float"><object-id pub-id-type="doi">10.1371/journal.pone.0234687.t004</object-id><label>Table 4</label><caption><title>GHG emissions from On-farm feed production.</title></caption><alternatives><graphic id="pone.0234687.t004g" xlink:href="pone.0234687.t004"/><table frame="hsides" rules="groups"><colgroup span="1"><col align="left" valign="middle" span="1"/><col align="left" valign="middle" span="1"/><col align="left" valign="middle" span="1"/><col align="left" valign="middle" span="1"/><col align="left" valign="middle" span="1"/></colgroup><thead><tr><th align="center" rowspan="1" colspan="1">Item</th><th align="center" rowspan="1" colspan="1">Corn silage</th><th align="center" rowspan="1" colspan="1">Annual temperate pasture</th><th align="center" rowspan="1" colspan="1">Annual tropical pasture</th><th align="center" rowspan="1" colspan="1">Perennial tropical pasture</th></tr></thead><tbody><tr><td align="justify" rowspan="1" colspan="1">DM yield, kg ha<sup>-1</sup></td><td align="center" rowspan="1" colspan="1">16000</td><td align="center" rowspan="1" colspan="1">9500</td><td align="center" rowspan="1" colspan="1">11000</td><td align="center" rowspan="1" colspan="1">9500</td></tr><tr><td align="justify" rowspan="1" colspan="1">Direct N<sub>2</sub>O emissions to air</td><td align="center" rowspan="1" colspan="1"/><td align="center" rowspan="1" colspan="1"/><td align="center" rowspan="1" colspan="1"/><td align="center" rowspan="1" colspan="1"/></tr><tr><td align="justify" rowspan="1" colspan="1">&#x000a0;&#x000a0;&#x000a0;&#x000a0;N organic fertilizer, kg ha<sup>-1</sup><xref ref-type="table-fn" rid="t004fn001"><sup>a</sup></xref></td><td align="center" rowspan="1" colspan="1">150</td><td align="center" rowspan="1" colspan="1">180</td><td align="center" rowspan="1" colspan="1">225</td><td align="center" rowspan="1" colspan="1">225</td></tr><tr><td align="justify" rowspan="1" colspan="1">&#x000a0;&#x000a0;&#x000a0;&#x000a0;N synthetic fertilizer</td><td align="center" rowspan="1" colspan="1">-</td><td align="center" rowspan="1" colspan="1">20</td><td align="center" rowspan="1" colspan="1">25</td><td align="center" rowspan="1" colspan="1">25</td></tr><tr><td align="justify" rowspan="1" colspan="1">&#x000a0;&#x000a0;&#x000a0;&#x000a0;N from residual DM, kg ha<sup>-1</sup><xref ref-type="table-fn" rid="t004fn002"><sup>b</sup></xref></td><td align="center" rowspan="1" colspan="1">70</td><td align="center" rowspan="1" colspan="1">112</td><td align="center" rowspan="1" colspan="1">129</td><td align="center" rowspan="1" colspan="1">112</td></tr><tr><td align="justify" rowspan="1" colspan="1">&#x000a0;&#x000a0;&#x000a0;&#x000a0;Emission fator, kg N<sub>2</sub>O-N (kg N)<sup>-1</sup><xref ref-type="table-fn" rid="t004fn002"><sup>c</sup></xref></td><td align="center" rowspan="1" colspan="1">0.002</td><td align="center" rowspan="1" colspan="1">0.002</td><td align="center" rowspan="1" colspan="1">0.002</td><td align="center" rowspan="1" colspan="1">0.002</td></tr><tr><td align="justify" rowspan="1" colspan="1">&#x000a0;&#x000a0;&#x000a0;&#x000a0;kg N<sub>2</sub>O ha<sup>-1</sup> from direct emissions</td><td align="center" rowspan="1" colspan="1">0.69</td><td align="center" rowspan="1" colspan="1">0.98</td><td align="center" rowspan="1" colspan="1">1.19</td><td align="center" rowspan="1" colspan="1">1.14</td></tr><tr><td align="justify" rowspan="1" colspan="1">Indirect N<sub>2</sub>O emissions to air</td><td align="justify" rowspan="1" colspan="1"/><td align="justify" rowspan="1" colspan="1"/><td align="justify" rowspan="1" colspan="1"/><td align="justify" rowspan="1" colspan="1"/></tr><tr><td align="justify" rowspan="1" colspan="1">&#x000a0;&#x000a0;&#x000a0;&#x000a0;kg NH<sub>3</sub>-N+NO<sub>x</sub>-N (kg organic N)<sup>-1</sup><xref ref-type="table-fn" rid="t004fn002"><sup>b</sup></xref></td><td align="center" rowspan="1" colspan="1">0.2</td><td align="center" rowspan="1" colspan="1">0.2</td><td align="center" rowspan="1" colspan="1">0.2</td><td align="center" rowspan="1" colspan="1">0.2</td></tr><tr><td align="justify" rowspan="1" colspan="1">&#x000a0;&#x000a0;&#x000a0;&#x000a0;kg NH<sub>3</sub>-N+NO<sub>x</sub>-N (kg synthetic N)<sup>-1</sup><xref ref-type="table-fn" rid="t004fn002"><sup>b</sup></xref></td><td align="center" rowspan="1" colspan="1">0.1</td><td align="center" rowspan="1" colspan="1">0.1</td><td align="center" rowspan="1" colspan="1">0.1</td><td align="center" rowspan="1" colspan="1">0.1</td></tr><tr><td align="justify" rowspan="1" colspan="1">&#x000a0;&#x000a0;&#x000a0;&#x000a0;kg N<sub>2</sub>O-N (kg NH<sub>3</sub>-N+NO<sub>x</sub>-N)<sup>-1</sup><xref ref-type="table-fn" rid="t004fn002"><sup>b</sup></xref></td><td align="center" rowspan="1" colspan="1">0.01</td><td align="center" rowspan="1" colspan="1">0.01</td><td align="center" rowspan="1" colspan="1">0.01</td><td align="center" rowspan="1" colspan="1">0.01</td></tr><tr><td align="justify" rowspan="1" colspan="1">&#x000a0;&#x000a0;&#x000a0;&#x000a0;kg N<sub>2</sub>O ha<sup>-1</sup> from NH<sub>3</sub>+NO<sub>x</sub> volatilized</td><td align="center" rowspan="1" colspan="1">0.47</td><td align="center" rowspan="1" colspan="1">0.60</td><td align="center" rowspan="1" colspan="1">0.75</td><td align="center" rowspan="1" colspan="1">0.75</td></tr><tr><td align="justify" rowspan="1" colspan="1">Indirect N<sub>2</sub>O emissions to soil</td><td align="center" rowspan="1" colspan="1"/><td align="center" rowspan="1" colspan="1"/><td align="center" rowspan="1" colspan="1"/><td align="center" rowspan="1" colspan="1"/></tr><tr><td align="justify" rowspan="1" colspan="1">&#x000a0;&#x000a0;&#x000a0;&#x000a0;kg N losses by leaching (kg N)<sup>-1</sup><xref ref-type="table-fn" rid="t004fn002"><sup>b</sup></xref></td><td align="center" rowspan="1" colspan="1">0.3</td><td align="center" rowspan="1" colspan="1">0.3</td><td align="center" rowspan="1" colspan="1">0.3</td><td align="center" rowspan="1" colspan="1">0.3</td></tr><tr><td align="justify" rowspan="1" colspan="1">&#x000a0;&#x000a0;&#x000a0;&#x000a0;kg N<sub>2</sub>O-N (kg N leaching)<sup>-1</sup></td><td align="center" rowspan="1" colspan="1">0.0075</td><td align="center" rowspan="1" colspan="1">0.0075</td><td align="center" rowspan="1" colspan="1">0.0075</td><td align="center" rowspan="1" colspan="1">0.0075</td></tr><tr><td align="justify" rowspan="1" colspan="1">&#x000a0;&#x000a0;&#x000a0;&#x000a0;kg N<sub>2</sub>O ha<sup>-1</sup> from N losses by leaching</td><td align="center" rowspan="1" colspan="1">0.78</td><td align="center" rowspan="1" colspan="1">1.10</td><td align="center" rowspan="1" colspan="1">1.34</td><td align="center" rowspan="1" colspan="1">1.28</td></tr><tr><td align="justify" rowspan="1" colspan="1">kg N<sub>2</sub>O ha<sup>-1</sup> (direct + indirect emissions)</td><td align="center" rowspan="1" colspan="1">1.94</td><td align="center" rowspan="1" colspan="1">2.68</td><td align="center" rowspan="1" colspan="1">3.28</td><td align="center" rowspan="1" colspan="1">3.16</td></tr><tr><td align="justify" rowspan="1" colspan="1">kg CO<sub>2</sub>e ha<sup>-1</sup> from N<sub>2</sub>0 emissions<xref ref-type="table-fn" rid="t004fn004"><sup>d</sup></xref></td><td align="center" rowspan="1" colspan="1">514</td><td align="center" rowspan="1" colspan="1">710</td><td align="center" rowspan="1" colspan="1">869</td><td align="center" rowspan="1" colspan="1">838</td></tr><tr><td align="justify" rowspan="1" colspan="1">kg CO<sub>2</sub> ha<sup>-1</sup> from lime+urea<xref ref-type="table-fn" rid="t004fn002"><sup>b</sup></xref></td><td align="center" rowspan="1" colspan="1">515</td><td align="center" rowspan="1" colspan="1">721</td><td align="center" rowspan="1" colspan="1">882</td><td align="center" rowspan="1" colspan="1">852</td></tr><tr><td align="justify" rowspan="1" colspan="1">kg CO<sub>2</sub> ha<sup>-1</sup> from diesel combustion<xref ref-type="table-fn" rid="t004fn005"><sup>e</sup></xref></td><td align="center" rowspan="1" colspan="1">802</td><td align="center" rowspan="1" colspan="1">38</td><td align="center" rowspan="1" colspan="1">23</td><td align="center" rowspan="1" colspan="1">12</td></tr><tr><td align="justify" rowspan="1" colspan="1">kg CO<sub>2</sub>e from secondary sources<xref ref-type="table-fn" rid="t004fn006"><sup>f</sup></xref></td><td align="center" rowspan="1" colspan="1">516</td><td align="center" rowspan="1" colspan="1">205</td><td align="center" rowspan="1" colspan="1">225</td><td align="center" rowspan="1" colspan="1">284</td></tr><tr><td align="justify" rowspan="1" colspan="1">Total CO<sub>2</sub>e emitted, kg ha<sup>-1</sup></td><td align="center" rowspan="1" colspan="1">1833</td><td align="center" rowspan="1" colspan="1">964</td><td align="center" rowspan="1" colspan="1">1130</td><td align="center" rowspan="1" colspan="1">1148</td></tr><tr><td align="justify" rowspan="1" colspan="1">Emission factor, kg CO<sub>2</sub>e (kg DM)<sup>-1</sup><xref ref-type="table-fn" rid="t004fn007"><sup>g</sup></xref></td><td align="center" rowspan="1" colspan="1">0.115</td><td align="center" rowspan="1" colspan="1">0.145</td><td align="center" rowspan="1" colspan="1">0.147</td><td align="center" rowspan="1" colspan="1">0.173</td></tr><tr><td align="justify" rowspan="1" colspan="1">Carbon sequestered, kg ha<sup>-1</sup><xref ref-type="table-fn" rid="t004fn008"><sup>h</sup></xref></td><td align="center" rowspan="1" colspan="1">-</td><td align="center" rowspan="1" colspan="1">-</td><td align="center" rowspan="1" colspan="1">-</td><td align="center" rowspan="1" colspan="1">570</td></tr><tr><td align="justify" rowspan="1" colspan="1">Sequestered CO<sub>2</sub>-C, kg ha<sup>-1</sup></td><td align="center" rowspan="1" colspan="1">-</td><td align="center" rowspan="1" colspan="1">-</td><td align="center" rowspan="1" colspan="1">-</td><td align="center" rowspan="1" colspan="1">1393</td></tr><tr><td align="justify" rowspan="1" colspan="1">kg CO<sub>2</sub>e ha<sup>-1</sup> (emitted&#x02014;sequestered)</td><td align="center" rowspan="1" colspan="1">1833</td><td align="center" rowspan="1" colspan="1">964</td><td align="center" rowspan="1" colspan="1">1130</td><td align="center" rowspan="1" colspan="1">-245</td></tr><tr><td align="justify" rowspan="1" colspan="1">Emission factor, kg CO<sub>2</sub>e (kg DM)<sup>-1</sup><xref ref-type="table-fn" rid="t004fn009"><sup>i</sup></xref></td><td align="center" rowspan="1" colspan="1">0.115</td><td align="center" rowspan="1" colspan="1">0.145</td><td align="center" rowspan="1" colspan="1">0.147</td><td align="center" rowspan="1" colspan="1">-0.037</td></tr></tbody></table></alternatives><table-wrap-foot><fn id="t004fn001"><p><sup>a</sup>100% of N requirements for corn silage and 90% for pastures was supplied by stocked manure.</p></fn><fn id="t004fn002"><p><sup>b</sup>From IPCC [<xref rid="pone.0234687.ref038" ref-type="bibr">38</xref>].</p></fn><fn id="t004fn003"><p><sup>c</sup>From a local study [<xref rid="pone.0234687.ref037" ref-type="bibr">37</xref>].</p></fn><fn id="t004fn004"><p><sup>d</sup>From Assessment report 5 (AR5; [<xref rid="pone.0234687.ref027" ref-type="bibr">27</xref>]).</p></fn><fn id="t004fn005"><p><sup>e</sup>From [<xref rid="pone.0234687.ref040" ref-type="bibr">40</xref>,<xref rid="pone.0234687.ref041" ref-type="bibr">41</xref>]</p></fn><fn id="t004fn006"><p><sup>f</sup>Emissions during the production of fuel, machinery, fertilizer, pesticides, seeds and plastic for ensilage. Estimated as described by Rotz et al. [<xref rid="pone.0234687.ref042" ref-type="bibr">42</xref>].</p></fn><fn id="t004fn007"><p><sup>g</sup>Without accounting sequestered CO<sub>2</sub>-C due to no-tillage for perennial pasture.</p></fn><fn id="t004fn008"><p><sup>h</sup>From [<xref rid="pone.0234687.ref039" ref-type="bibr">39</xref>].</p></fn><fn id="t004fn009"><p><sup>i</sup>Accounting sequestered CO<sub>2</sub>-C due to no-tillage for perennial pasture.</p></fn></table-wrap-foot></table-wrap></sec></sec><sec id="sec010"><title>Animal husbandry</title><p>The CH<sub>4</sub> emissions from enteric fermentation intensity (g (kg ECM)<sup>-1</sup>) was a function of estimated CH<sub>4</sub> yield (g (kg DM intake)<sup>-1</sup>), actual DM intake and ECM. The enteric CH<sub>4</sub> yield was estimated as a function of neutral detergent fiber (NDF) concentration on total DM intake, as proposed by Niu et al. [<xref rid="pone.0234687.ref043" ref-type="bibr">43</xref>], where: CH<sub>4</sub> yield (g (kg DM intake)<sup>-1</sup>) = 13.8 + 0.185 &#x000d7; NDF (% DM intake).</p></sec><sec id="sec011"><title>Manure from confined cows and urine and dung from grazing animals</title><p>The CH<sub>4</sub> emission from manure (kg (kg ECM)<sup>-1</sup>) was a function of daily CH<sub>4</sub> emission from manure (kg cow<sup>-1</sup>) and daily ECM (kg cow<sup>-1</sup>). The daily CH<sub>4</sub> emission from manure was estimated according to IPCC [<xref rid="pone.0234687.ref038" ref-type="bibr">38</xref>], which considered daily volatile solid (VS) excreted (kg DM cow<sup>-1</sup>) in manure. The daily VS was estimated as proposed by Eug&#x000e8;ne et al. [<xref rid="pone.0234687.ref044" ref-type="bibr">44</xref>] as: VS = NDOMI + (UE &#x000d7; GE) &#x000d7; (OM/18.45), where: VS = volatile solid excretion on an organic matter (OM) basis (kg day<sup>-1</sup>), NDOMI = non-digestible OM intake (kg day<sup>-1</sup>): (1- OM digestibility) &#x000d7; OM intake, UE = urinary energy excretion as a fraction of GE (0.04), GE = gross energy intake (MJ day<sup>-1</sup>), OM = organic matter (g), 18.45 = conversion factor for dietary GE per kg of DM (MJ kg<sup>-1</sup>).</p><p>The OM digestibility was estimated as a function of chemical composition, using equations published by INRA [<xref rid="pone.0234687.ref021" ref-type="bibr">21</xref>], which takes into account the effects of digestive interactions due to feeding level, the proportion of concentrate and rumen protein balance on OM digestibility. For scenarios where cows had access to grazing, the amount of calculated VS were corrected as a function of the time at pasture. The biodegradability of manure factor (0.13 for dairy cows in Latin America) and methane conversion factor (MCF) values were taken from IPCC [<xref rid="pone.0234687.ref038" ref-type="bibr">38</xref>]. The MCF values for pit storage below animal confinements (&#x0003e; 1 month) were used for the calculation, taking into account the annual average temperature (16.6&#x000ba;C) or the average temperatures during the growth period of temperate (14.4&#x000ba;C) or tropical (21&#x000ba;C) annual pastures, which were 31%, 26% and 46%, respectively.</p><p>The N<sub>2</sub>O-N emissions from urine and feces were estimated considering the proportion of N excreted as manure and storage or as urine and dung deposited by grazing animals. These proportions were calculated based on the proportion of daily time that animals stayed on pasture (7 h/24 h = 0.29) or confinement (1&#x02212;0.29 = 0.71). For lactating heifers and cows, the total amount of N excreted was calculated by the difference between N intake and milk N excretion. For heifers and non-lactating cows, urinary and fecal N excretion were estimated as proposed by Reed et al. [<xref rid="pone.0234687.ref045" ref-type="bibr">45</xref>] (<xref rid="pone.0234687.t003" ref-type="table">Table 3</xref>: equations 10 and 12, respectively). The N<sub>2</sub>O emissions from stored manure as well as urine and dung during grazing were calculated based on the conversion of N<sub>2</sub>O-N emissions to N<sub>2</sub>O emissions, where N<sub>2</sub>O emissions = N<sub>2</sub>O-N emissions &#x000d7; 44/28. The emission factors were 0.002 kg N<sub>2</sub>O-N (kg N)<sup>-1</sup> stored in a pit below animal confinements, and 0.02 kg N<sub>2</sub>O-N (kg of urine and dung)<sup>-1</sup> deposited on pasture [<xref rid="pone.0234687.ref038" ref-type="bibr">38</xref>]. The indirect N<sub>2</sub>O emissions from storage manure and urine and dung deposits on pasture were also estimated using the IPCC [<xref rid="pone.0234687.ref038" ref-type="bibr">38</xref>] emission factors.</p></sec><sec id="sec012"><title>Farm management</title><p>Emissions due to farm management included those from fuel and machinery for manure handling and electricity for milking and confinement (<xref rid="pone.0234687.t005" ref-type="table">Table 5</xref>). Emissions due to feed processing such as cutting, crushing, mixing and distributing, as well as secondary sources of emissions during the production of fuel, machinery, fertilizer, pesticides, seeds and plastic for ensilage were included in &#x02018;Emissions from crop and pasture production&#x02019; section.</p><table-wrap id="pone.0234687.t005" orientation="portrait" position="float"><object-id pub-id-type="doi">10.1371/journal.pone.0234687.t005</object-id><label>Table 5</label><caption><title>Factors for major resource inputs in farm management.</title></caption><alternatives><graphic id="pone.0234687.t005g" xlink:href="pone.0234687.t005"/><table frame="hsides" rules="groups"><colgroup span="1"><col align="left" valign="middle" span="1"/><col align="left" valign="middle" span="1"/><col align="left" valign="middle" span="1"/><col align="left" valign="middle" span="1"/></colgroup><thead><tr><th align="center" rowspan="1" colspan="1">Item</th><th align="center" rowspan="1" colspan="1">Factor</th><th align="center" rowspan="1" colspan="1">Unit<xref ref-type="table-fn" rid="t005fn001"><sup>a</sup></xref></th><th align="center" rowspan="1" colspan="1">References</th></tr></thead><tbody><tr><td align="justify" rowspan="1" colspan="1">Production and transport of diesel</td><td align="center" rowspan="1" colspan="1">0.374</td><td align="center" rowspan="1" colspan="1">kg CO<sub>2</sub>e L<sup>-1</sup></td><td align="center" rowspan="1" colspan="1">[<xref rid="pone.0234687.ref041" ref-type="bibr">41</xref>]</td></tr><tr><td align="justify" rowspan="1" colspan="1">Emissions from diesel fuel combustion</td><td align="center" rowspan="1" colspan="1">2.637</td><td align="center" rowspan="1" colspan="1">kg CO<sub>2</sub>e L<sup>-1</sup></td><td align="center" rowspan="1" colspan="1">[<xref rid="pone.0234687.ref041" ref-type="bibr">41</xref>]</td></tr><tr><td align="justify" rowspan="1" colspan="1">Production of electricity<xref ref-type="table-fn" rid="t005fn002"><sup>b</sup></xref></td><td align="center" rowspan="1" colspan="1">0.73</td><td align="center" rowspan="1" colspan="1">kg CO<sub>2</sub>e kWh<sup>-1</sup></td><td align="center" rowspan="1" colspan="1">[<xref rid="pone.0234687.ref041" ref-type="bibr">41</xref>]</td></tr><tr><td align="justify" rowspan="1" colspan="1">Production of electricity (alternative)<xref ref-type="table-fn" rid="t005fn003"><sup>c</sup></xref></td><td align="center" rowspan="1" colspan="1">0.205</td><td align="center" rowspan="1" colspan="1">kg CO<sub>2</sub>e kWh<sup>-1</sup></td><td align="center" rowspan="1" colspan="1">[<xref rid="pone.0234687.ref046" ref-type="bibr">46</xref>]</td></tr><tr><td align="justify" rowspan="1" colspan="1">Production of machinery</td><td align="center" rowspan="1" colspan="1">3.54</td><td align="center" rowspan="1" colspan="1">kg CO<sub>2</sub>e (kg mm)<sup>-1</sup></td><td align="center" rowspan="1" colspan="1">[<xref rid="pone.0234687.ref042" ref-type="bibr">42</xref>]</td></tr><tr><td align="justify" rowspan="1" colspan="1">Manure handling</td><td align="center" rowspan="1" colspan="1"/><td align="center" rowspan="1" colspan="1"/><td align="center" rowspan="1" colspan="1"/></tr><tr><td align="justify" rowspan="1" colspan="1">&#x000a0;&#x000a0;&#x000a0;&#x000a0;Fuel for manure handling</td><td align="center" rowspan="1" colspan="1">0.600</td><td align="center" rowspan="1" colspan="1">L diesel tonne<sup>-1</sup></td><td align="center" rowspan="1" colspan="1">[<xref rid="pone.0234687.ref042" ref-type="bibr">42</xref>]</td></tr><tr><td align="justify" rowspan="1" colspan="1">&#x000a0;&#x000a0;&#x000a0;&#x000a0;Machinery for manure handling</td><td align="center" rowspan="1" colspan="1">0.17</td><td align="center" rowspan="1" colspan="1">kg mm kg<sup>-1</sup></td><td align="center" rowspan="1" colspan="1">[<xref rid="pone.0234687.ref042" ref-type="bibr">42</xref>]</td></tr><tr><td align="justify" rowspan="1" colspan="1">Milking and confinement</td><td align="center" rowspan="1" colspan="1"/><td align="center" rowspan="1" colspan="1"/><td align="center" rowspan="1" colspan="1"/></tr><tr><td align="justify" rowspan="1" colspan="1">&#x000a0;&#x000a0;&#x000a0;&#x000a0;Electricity for milking</td><td align="center" rowspan="1" colspan="1">0.06</td><td align="center" rowspan="1" colspan="1">kWh (kg milk)<sup>-1</sup></td><td align="center" rowspan="1" colspan="1">[<xref rid="pone.0234687.ref047" ref-type="bibr">47</xref>]</td></tr><tr><td align="justify" rowspan="1" colspan="1">&#x000a0;&#x000a0;&#x000a0;&#x000a0;Electricity for lighting<xref ref-type="table-fn" rid="t005fn004"><sup>d</sup></xref></td><td align="center" rowspan="1" colspan="1">75</td><td align="center" rowspan="1" colspan="1">kWh cow<sup>-1</sup></td><td align="center" rowspan="1" colspan="1">[<xref rid="pone.0234687.ref047" ref-type="bibr">47</xref>]</td></tr></tbody></table></alternatives><table-wrap-foot><fn id="t005fn001"><p><sup>a</sup>mm, machinery mass</p></fn><fn id="t005fn002"><p><sup>b</sup>Based on United States data.</p></fn><fn id="t005fn003"><p><sup>c</sup>Based on the Brazilian electricity matrix.</p></fn><fn id="t005fn004"><p><sup>d</sup>Naturally ventilated barns.</p></fn></table-wrap-foot></table-wrap><p>The amount of fuel use for manure handling were estimated taking into consideration the amount of manure produced per cow and the amounts of fuel required for manure handling (L diesel t<sup>-1</sup>) [<xref rid="pone.0234687.ref042" ref-type="bibr">42</xref>]. The amount of manure was estimated from OM excretions (kg cow<sup>-1</sup>), assuming that the manure has 8% ash on DM basis and 60% DM content. The OM excretions were calculated by NDOMI &#x000d7; days in confinement &#x000d7; proportion of daily time that animals stayed on confinement.</p><p>The emissions from fuel were estimated considering the primary (emissions from fuel burned) and secondary (emissions for producing and transporting fuel) emissions. The primary emissions were calculated by the amount of fuel required for manure handling (L) &#x000d7; (kg CO<sub>2</sub>e L<sup>-1</sup>) [<xref rid="pone.0234687.ref041" ref-type="bibr">41</xref>]. The secondary emissions from fuel were calculated by the amount of fuel required for manure handling &#x000d7; emissions for production and transport of fuel (kg CO<sub>2</sub>e L<sup>-1</sup>) [<xref rid="pone.0234687.ref041" ref-type="bibr">41</xref>]. Emissions from manufacture and repair of machinery for manure handling were estimated by manure produced per cow (t) &#x000d7; (kg machinery mass (kg manure)<sup>-1</sup> &#x000d7; 10<sup>&#x02212;3</sup>) [<xref rid="pone.0234687.ref042" ref-type="bibr">42</xref>] &#x000d7; kg CO<sub>2</sub>e (kg machinery mass)<sup>-1</sup> [<xref rid="pone.0234687.ref042" ref-type="bibr">42</xref>].</p><p>Emissions from electricity for milking and confinement were estimated using two emission factors (kg CO<sub>2</sub> kWh<sup>-1</sup>). The first one is based on United States electricity matrix [<xref rid="pone.0234687.ref041" ref-type="bibr">41</xref>], and was used as a reference of an electricity matrix with less hydroelectric power than the region under study. The second is based on the Brazilian electricity matrix [<xref rid="pone.0234687.ref046" ref-type="bibr">46</xref>]. The electricity required for milking activities is 0.06 kWh (kg milk produced)<sup>-1</sup> [<xref rid="pone.0234687.ref047" ref-type="bibr">47</xref>]. The annual electricity use for lighting was 75 kWh cow<sup>-1</sup>, which is the value considered for lactating cows in naturally ventilated barns [<xref rid="pone.0234687.ref047" ref-type="bibr">47</xref>].</p></sec><sec id="sec013"><title>Co-product allocation</title><p>The C footprint for milk produced in the system was calculated using a biophysical allocation approach, as recommended by the International Dairy Federation [<xref rid="pone.0234687.ref049" ref-type="bibr">49</xref>], and described by Thoma et al. [<xref rid="pone.0234687.ref048" ref-type="bibr">48</xref>]. Briefly, AR<sub>milk</sub> = 1&#x02013;6.04 &#x000d7; BMR, where<sub>:</sub> AR<sub>milk</sub> is the allocation ratio for milk and BMR is cow BW at the time of slaughter (kg) + calf BW sold (kg) divided by the total ECM produced during cow`s entire life (kg). The AR<sub>milk</sub> were 0.854 and 0.849 for TMR and TMR with both pasture scenarios, respectively. The AR<sub>milk</sub> was applied to the whole emissions, except for the electricity consumed for milking (milking parlor) and refrigerant loss, which was directly assigned to milk production.</p></sec><sec id="sec014"><title>Sensitivity analysis</title><p>A sensitivity index was calculated as described by Rotz et al. [<xref rid="pone.0234687.ref042" ref-type="bibr">42</xref>]. The sensitivity index was defined for each emission source as the percentage change in the C footprint for a 10% change in the given emission source divided by 10%. Thus, a value near 0 indicates a low sensitivity, whereas an index near or greater than 1 indicates a high sensitivity because a change in this value causes a similar change in the footprint.</p></sec></sec><sec sec-type="conclusions" id="sec015"><title>Results and discussion</title><p>The study has assessed the impact of tropical and temperate pastures in dairy cows fed TMR on the C footprint of dairy production in subtropics. Different factors were taken in to consideration to estimate emissions from manure (or urine and dung) of grazing animals, feed production and electricity use.</p><sec id="sec016"><title>Greenhouse gas emissions</title><p>Depending on emission factors used for calculating emissions from urine and dung (IPCC or local data) and feed production (Tables <xref rid="pone.0234687.t003" ref-type="table">3</xref> or <xref rid="pone.0234687.t004" ref-type="table">4</xref>), the C footprint was similar (<xref ref-type="fig" rid="pone.0234687.g002">Fig 2A and 2B</xref>) or decreased by 0.04 kg CO<sub>2</sub>e (kg ECM)<sup>-1</sup> (<xref ref-type="fig" rid="pone.0234687.g002">Fig 2C and 2D</xref>) in scenarios that included pastures compared to <italic>ad libitum</italic> TMR intake. Due to differences in emission factors, the overall GHG emission values ranged from 0.92 to 1.04 kg CO<sub>2</sub>e (kg ECM)<sup>-1</sup> for dairy cows receiving TMR exclusively, and from 0.88 to 1.04 kg CO<sub>2</sub>e (kg ECM)<sup>-1</sup> for cows with access to pasture. Using IPCC emission factors [<xref rid="pone.0234687.ref038" ref-type="bibr">38</xref>], manure emissions increased as TMR intake went down (<xref ref-type="fig" rid="pone.0234687.g002">Fig 2A and 2B</xref>). However, using local emission factors for estimating N<sub>2</sub>O-N emissions [<xref rid="pone.0234687.ref037" ref-type="bibr">37</xref>], manure emissions decreased as TMR intake went down (<xref ref-type="fig" rid="pone.0234687.g002">Fig 2C and 2D</xref>). Regardless of emission factors used (Tables <xref rid="pone.0234687.t003" ref-type="table">3</xref> or <xref rid="pone.0234687.t004" ref-type="table">4</xref>), emissions from feed production decreased to a small extent as the proportion of TMR intake decreased. Emissions from farm management did not contribute more than 5% of overall GHG emissions.</p><fig id="pone.0234687.g002" orientation="portrait" position="float"><object-id pub-id-type="doi">10.1371/journal.pone.0234687.g002</object-id><label>Fig 2</label><caption><title>Overall greenhouse gas emissions in dairy cattle systems under various scenarios.</title><p>TMR = <italic>ad libitum</italic> TMR intake, 75TMR = 75% of <italic>ad libitum</italic> TMR intake with access to pasture, 50TMR = 50% of <italic>ad libitum</italic> TMR intake with access to pasture. (a) N<sub>2</sub>O emission factors for urine and dung from IPCC [<xref rid="pone.0234687.ref038" ref-type="bibr">38</xref>], feed production emission factors from <xref rid="pone.0234687.t003" ref-type="table">Table 3</xref> without accounting for sequestered CO<sub>2</sub>-C from perennial pasture, production of electricity = 0.73 kg CO<sub>2</sub>e kWh<sup>-1</sup> [<xref rid="pone.0234687.ref041" ref-type="bibr">41</xref>]. (b) N<sub>2</sub>O emission factors for urine and dung from IPCC [<xref rid="pone.0234687.ref038" ref-type="bibr">38</xref>], feed production emission factors from <xref rid="pone.0234687.t003" ref-type="table">Table 3</xref> without accounting for sequestered CO<sub>2</sub>-C from perennial pasture, production of electricity = 0.205 kg CO<sub>2</sub>e kWh<sup>-1</sup> [<xref rid="pone.0234687.ref046" ref-type="bibr">46</xref>]; (c) N<sub>2</sub>O emission factors for urine and dung from local data [<xref rid="pone.0234687.ref037" ref-type="bibr">37</xref>], feed production EF from <xref rid="pone.0234687.t004" ref-type="table">Table 4</xref> without accounting for sequestered CO<sub>2</sub>-C from perennial pasture, production of electricity = 0.205 kg CO<sub>2</sub>e kWh<sup>-1</sup> [<xref rid="pone.0234687.ref046" ref-type="bibr">46</xref>]. (d) N<sub>2</sub>O emission factors for urine and dung from local data [<xref rid="pone.0234687.ref037" ref-type="bibr">37</xref>], feed production emission factors from <xref rid="pone.0234687.t004" ref-type="table">Table 4</xref> accounting for sequestered CO<sub>2</sub>-C from perennial pasture, production of electricity = 0.205 kg CO<sub>2</sub>e kWh<sup>-1</sup> [<xref rid="pone.0234687.ref046" ref-type="bibr">46</xref>].</p></caption><graphic xlink:href="pone.0234687.g002"/></fig><p>Considering IPCC emission factors for N<sub>2</sub>O emissions from urine and dung [<xref rid="pone.0234687.ref038" ref-type="bibr">38</xref>] and those from <xref rid="pone.0234687.t003" ref-type="table">Table 3</xref>, the C footprint ranged from 0.99 to 1.04 kg CO<sub>2</sub>e (kg ECM)<sup>-1</sup>, and was close to those reported under confined based systems in California [<xref rid="pone.0234687.ref049" ref-type="bibr">49</xref>], Canada [<xref rid="pone.0234687.ref050" ref-type="bibr">50</xref>], China [<xref rid="pone.0234687.ref008" ref-type="bibr">8</xref>], Ireland [<xref rid="pone.0234687.ref009" ref-type="bibr">9</xref>], different scenarios in Australia [<xref rid="pone.0234687.ref051" ref-type="bibr">51</xref>,<xref rid="pone.0234687.ref052" ref-type="bibr">52</xref>] and Uruguay [<xref rid="pone.0234687.ref011" ref-type="bibr">11</xref>], which ranged from 0.98 to 1.16 kg CO<sub>2</sub>e (kg ECM)<sup>-1</sup>. When local emission factors for N<sub>2</sub>O emissions from urine and dung [<xref rid="pone.0234687.ref037" ref-type="bibr">37</xref>] and those from <xref rid="pone.0234687.t004" ref-type="table">Table 4</xref> were taking into account, the C footprint for scenarios including pasture, without accounting for sequestered CO<sub>2</sub>-C from perennial pasture&#x02014;0.91 kg CO<sub>2</sub>e (kg ECM)<sup>-1</sup>&#x02014;was lower than the range of values described above. However, these values were still greater than high-performance confinement systems in UK and USA [<xref rid="pone.0234687.ref053" ref-type="bibr">53</xref>] or grass based dairy systems in Ireland [<xref rid="pone.0234687.ref009" ref-type="bibr">9</xref>,<xref rid="pone.0234687.ref053" ref-type="bibr">53</xref>] and New Zealand [<xref rid="pone.0234687.ref008" ref-type="bibr">8</xref>,<xref rid="pone.0234687.ref054" ref-type="bibr">54</xref>], which ranged from 0.52 to 0.89 kg CO<sub>2</sub>e (kg ECM)<sup>-1</sup>. Regardless of which emission factor was used, we found a lower C footprint in all conditions compared to scenarios with lower milk production per cow or in poor conditions of manure management, which ranged from 1.4 to 2.3 kg CO<sub>2</sub>e (kg ECM)<sup>-1</sup> [<xref rid="pone.0234687.ref008" ref-type="bibr">8</xref>,<xref rid="pone.0234687.ref055" ref-type="bibr">55</xref>]. Thus, even though differences between studies may be partially explained by various assumptions (e.g., emission factors, co-product allocation, methane emissions estimation, sequestered CO<sub>2</sub>-C, etc.), herd productivity and manure management were systematically associated with the C footprint of the dairy systems.</p><p>The similarity of C footprint between different scenarios using IPCC [<xref rid="pone.0234687.ref038" ref-type="bibr">38</xref>] for estimating emissions from manure and for emissions from feed production (<xref rid="pone.0234687.t003" ref-type="table">Table 3</xref>) was a consequence of the trade-off between greater manure emissions and lower emissions to produce feed, as the proportion of pasture in diets increased. Additionally, the small negative effect of pasture on ECM production also contributed to the trade-off. The impact of milk production on the C footprint was reported in a meta-analysis comprising 30 studies from 15 different countries [<xref rid="pone.0234687.ref022" ref-type="bibr">22</xref>]. As observed in this study (<xref ref-type="fig" rid="pone.0234687.g002">Fig 2A and 2B</xref>) the authors reported no significant difference between the C footprint of pasture-based vs. confinement systems. However, they observed that an increase of 1000 kg cow<sup>-1</sup> (5000 to 6000 kg ECM) reduced the C footprint by 0.12 kg CO<sub>2</sub>e (kg ECM)<sup>-1</sup>, which may explain an apparent discrepancy between our study and an LCA performed in south Brazilian conditions [<xref rid="pone.0234687.ref056" ref-type="bibr">56</xref>]. Their study compared a confinement and a grazing-based dairy system with annual average milk production of 7667 and 5535 kg cow, respectively. In this study, the same herd was used in all systems, with an annual average milk production of around 7000 kg cow<sup>-1</sup>. Experimental data showed a reduction not greater than 3% of ECM when 50% of TMR was replaced by pasture access.</p><p>The lower C footprint in scenarios with access to pasture, when local emission factors [<xref rid="pone.0234687.ref037" ref-type="bibr">37</xref>] were used for N<sub>2</sub>O emissions from urine and dung and for feed production (<xref rid="pone.0234687.t004" ref-type="table">Table 4</xref>), may also be partially attributed to the small negative effect of pasture on ECM production. Nevertheless, local emission factors for urine and dung had a great impact on scenarios including pastures compared to <italic>ad libitum</italic> TMR intake. Whereas the IPCC [<xref rid="pone.0234687.ref038" ref-type="bibr">38</xref>] considers an emission of 0.02 kg N<sub>2</sub>O-N (kg N)<sup>-1</sup> for urine and dung from grazing animals, experimental evidence shows that it may be up to five times lower, averaging 0.004 kg N<sub>2</sub>O-N kg<sup>-1</sup> [<xref rid="pone.0234687.ref037" ref-type="bibr">37</xref>].</p></sec><sec id="sec017"><title>Methane emissions</title><p>The enteric CH<sub>4</sub> intensity was similar between different scenarios (<xref ref-type="fig" rid="pone.0234687.g002">Fig 2</xref>), showing the greatest sensitivity index, with values ranging from 0.53 to 0.62, which indicate that for a 10% change in this source, the C footprint may change between 5.3 and 6.2% (<xref ref-type="fig" rid="pone.0234687.g003">Fig 3</xref>). The large effect of enteric CH<sub>4</sub> emissions on the whole C footprint was expected, because the impact of enteric CH<sub>4</sub> on GHG emissions of milk production in different dairy systems has been estimated to range from 44 to 60% of the total CO<sub>2</sub>e [<xref rid="pone.0234687.ref050" ref-type="bibr">50</xref>,<xref rid="pone.0234687.ref052" ref-type="bibr">52</xref>,<xref rid="pone.0234687.ref057" ref-type="bibr">57</xref>,<xref rid="pone.0234687.ref058" ref-type="bibr">58</xref>]. However, emissions in feed production may be the most important source of GHG when emission factors for producing concentrate feeds are greater than 0.7 kg CO<sub>2</sub>e kg<sup>-1</sup> [<xref rid="pone.0234687.ref059" ref-type="bibr">59</xref>], which did not happen in this study.</p><fig id="pone.0234687.g003" orientation="portrait" position="float"><object-id pub-id-type="doi">10.1371/journal.pone.0234687.g003</object-id><label>Fig 3</label><caption><title>Sensitivity of the C footprint.</title><p>Sensitivity index = percentage change in C footprint for a 10% change in the given emission source divided by 10% of. (a) N<sub>2</sub>O emission factors for urine and dung from IPCC [<xref rid="pone.0234687.ref038" ref-type="bibr">38</xref>], feed production emission factors from <xref rid="pone.0234687.t003" ref-type="table">Table 3</xref>, production of electricity = 0.73 kg CO<sub>2</sub>e kWh<sup>-1</sup> [<xref rid="pone.0234687.ref041" ref-type="bibr">41</xref>]. (b) N<sub>2</sub>O emission factors for urine and dung from IPCC [<xref rid="pone.0234687.ref038" ref-type="bibr">38</xref>], feed production emission factors from <xref rid="pone.0234687.t003" ref-type="table">Table 3</xref>, production of electricity = 0.205 kg CO<sub>2</sub>e kWh<sup>-1</sup> [<xref rid="pone.0234687.ref046" ref-type="bibr">46</xref>]; (c) N<sub>2</sub>O emission factors for urine and dung from local data [<xref rid="pone.0234687.ref037" ref-type="bibr">37</xref>], feed production EF from <xref rid="pone.0234687.t004" ref-type="table">Table 4</xref> without accounting sequestered CO<sub>2</sub>-C from perennial pasture, production of electricity = 0.205 kg CO<sub>2</sub>e kWh<sup>-1</sup> [<xref rid="pone.0234687.ref046" ref-type="bibr">46</xref>]. (d) N<sub>2</sub>O emission factors for urine and dung from local data [<xref rid="pone.0234687.ref037" ref-type="bibr">37</xref>], feed production emission factors from <xref rid="pone.0234687.t004" ref-type="table">Table 4</xref> accounting sequestered CO<sub>2</sub>-C from perennial pasture, production of electricity = 0.205 kg CO<sub>2</sub>e kWh<sup>-1</sup> [<xref rid="pone.0234687.ref046" ref-type="bibr">46</xref>].</p></caption><graphic xlink:href="pone.0234687.g003"/></fig><p>The lack of difference in enteric CH<sub>4</sub> emissions in different systems can be explained by the narrow range of NDF content in diets (&#x0003c;4% difference). This non-difference is due to the lower NDF content of annual temperate pastures (495 g (kg DM)<sup>-1</sup>) compared to corn silage (550 g (kg DM)<sup>-1</sup>). Hence, an expected, increase NDF content with decreased concentrate was partially offset by an increase in the pasture proportion relatively low in NDF. This is in agreement with studies conducted in southern Brazil, which have shown that the actual enteric CH<sub>4</sub> emissions may decrease with inclusion of temperate pastures in cows receiving corn silage and soybean meal [<xref rid="pone.0234687.ref060" ref-type="bibr">60</xref>] or increase enteric CH<sub>4</sub> emissions when dairy cows grazing a temperate pasture was supplemented with corn silage [<xref rid="pone.0234687.ref061" ref-type="bibr">61</xref>]. Additionally, enteric CH<sub>4</sub> emissions did not differ between dairy cows receiving TMR exclusively or grazing a tropical pasture in the same scenarios as in this study [<xref rid="pone.0234687.ref026" ref-type="bibr">26</xref>].</p></sec><sec id="sec018"><title>Emissions from excreta and feed production</title><p>Using IPCC emission factors for N<sub>2</sub>O emissions from urine and dung [<xref rid="pone.0234687.ref038" ref-type="bibr">38</xref>] and those from <xref rid="pone.0234687.t003" ref-type="table">Table 3</xref>, CH<sub>4</sub> emissions from manure decreased 0.07 kg CO<sub>2</sub>e (kg ECM)<sup>-1</sup>, but N<sub>2</sub>O emissions from manure increased 0.09 kg CO<sub>2</sub>e (kg ECM)<sup>-1</sup>, as TMR intake was restricted to 50% <italic>ad libitum</italic> (<xref ref-type="fig" rid="pone.0234687.g004">Fig 4A</xref>). Emissions for pastures increased by 0.06 kg CO<sub>2</sub>e (kg ECM)<sup>-1</sup>, whereas emissions for producing concentrate feeds and corn silage decreased by 0.09 kg CO<sub>2</sub>e (kg ECM)<sup>-1</sup>, as TMR intake decreased (<xref ref-type="fig" rid="pone.0234687.g004">Fig 4B</xref>). In this situation, the lack of difference in calculated C footprints of different systems was also due to the greater emissions from manure, and offset by lower emissions from feed production with inclusion of pasture in lactating dairy cow diets. The greater N<sub>2</sub>O-N emissions from manure with pasture was a consequence of higher N<sub>2</sub>O-N emissions due to greater CP content and N urine excretion, as pasture intake increased. The effect of CP content on urine N excretion has been shown by several authors in lactating dairy cows [<xref rid="pone.0234687.ref062" ref-type="bibr">62</xref>&#x02013;<xref rid="pone.0234687.ref064" ref-type="bibr">64</xref>]. For instance, by decreasing CP content from 185 to 152 g (kg DM)<sup>-1</sup>, N intake decreased by 20% and urine N excretion by 60% [<xref rid="pone.0234687.ref062" ref-type="bibr">62</xref>]. In this study, the CP content for lactating dairy cows ranged from 150 g (kg DM)<sup>-1</sup> on TMR system to 198 g (kg DM)<sup>-1</sup> on 50% TMR with pasture. Additionally, greater urine N excretion is expected with greater use of pasture. This occurs because protein utilization in pastures is inefficient, as the protein in fresh forages is highly degradable in the rumen and may not be captured by microbes [<xref rid="pone.0234687.ref065" ref-type="bibr">65</xref>].</p><fig id="pone.0234687.g004" orientation="portrait" position="float"><object-id pub-id-type="doi">10.1371/journal.pone.0234687.g004</object-id><label>Fig 4</label><caption><title>Greenhouse gas emissions (GHG) from manure and feed production in dairy cattle systems.</title><p>TMR = <italic>ad libitum</italic> TMR intake, 75TMR = 75% of <italic>ad libitum</italic> TMR intake with access to pasture, 50TMR = 50% of <italic>ad libitum</italic> TMR intake with access to pasture. (a) N<sub>2</sub>O emission factors for urine and dung from IPCC [<xref rid="pone.0234687.ref038" ref-type="bibr">38</xref>]. (b) Feed production emission factors from <xref rid="pone.0234687.t003" ref-type="table">Table 3</xref>. (c) N<sub>2</sub>O emission factors for urine and dung from local data [<xref rid="pone.0234687.ref037" ref-type="bibr">37</xref>]. (d) Feed production emission factors from <xref rid="pone.0234687.t004" ref-type="table">Table 4</xref> accounting sequestered CO<sub>2</sub>-C from perennial pasture.</p></caption><graphic xlink:href="pone.0234687.g004"/></fig><p>Using local emission factors for N<sub>2</sub>O emissions from urine and dung [<xref rid="pone.0234687.ref037" ref-type="bibr">37</xref>] and those from <xref rid="pone.0234687.t004" ref-type="table">Table 4</xref>, reductions in CH<sub>4</sub> emissions from stocked manure, when pastures were included on diets, did not offset by increases in N<sub>2</sub>O emissions from excreta (<xref ref-type="fig" rid="pone.0234687.g004">Fig 4C</xref>). In this case, total emissions from manure (<xref ref-type="fig" rid="pone.0234687.g004">Fig 4C</xref>) and feed production (<xref ref-type="fig" rid="pone.0234687.g004">Fig 4D</xref>) decreased with the inclusion of pasture. The impact of greater CP content and N urine excretion with increased pasture intake was offset by the much lower emission factors used for N<sub>2</sub>O emissions from urine and dung. As suggested by other authors [<xref rid="pone.0234687.ref066" ref-type="bibr">66</xref>,<xref rid="pone.0234687.ref067" ref-type="bibr">67</xref>], these results show that IPCC default value may need to be revised for the subtropical region.</p><p>Emissions for feed production decreased when pasture was included due to the greater emission factor for corn grain production compared to pastures. Emissions from concentrate and silage had at least twice the sensitivity index compared to emissions from pastures. The amount of grain required per cow in a lifetime decreased from 7,300 kg to 4,000 kg when 50% of TMR was replaced by pasture access. These results are in agreement with other studies which found lower C footprint, as concentrate use is reduced and/or pasture is included [<xref rid="pone.0234687.ref009" ref-type="bibr">9</xref>,<xref rid="pone.0234687.ref068" ref-type="bibr">68</xref>,<xref rid="pone.0234687.ref069" ref-type="bibr">69</xref>]. Moreover, it has been demonstrated that in intensive dairy systems, after enteric fermentation, feed production is the second main contributor to C footprint [<xref rid="pone.0234687.ref050" ref-type="bibr">50</xref>]. There is potential to decrease the environmental impact of dairy systems by reducing the use of concentrate ingredients with high environmental impact, particularly in confinements [<xref rid="pone.0234687.ref009" ref-type="bibr">9</xref>].</p></sec><sec id="sec019"><title>Farm management</title><p>The lower impact of emissions from farm management is in agreement with other studies conducted in Europe [<xref rid="pone.0234687.ref009" ref-type="bibr">9</xref>, <xref rid="pone.0234687.ref062" ref-type="bibr">62</xref>] and USA [<xref rid="pone.0234687.ref042" ref-type="bibr">42</xref>, <xref rid="pone.0234687.ref055" ref-type="bibr">55</xref>], where the authors found that most emissions in dairy production systems are from enteric fermentation, feed production and emissions from excreta. As emissions from fuel for on-farm feed production were accounted into the &#x02018;emissions from crop and pasture production&#x02019;, total emissions from farm management were not greater than 5% of total C footprint.</p><p>Emissions from farm management dropped when the emission factor for electricity generation was based on the Brazilian matrix. In this case, the emission factor for electricity generation (0.205 kg CO<sub>2</sub>e kWh<sup>-1</sup> [<xref rid="pone.0234687.ref046" ref-type="bibr">46</xref>]) is much lower than that in a LCA study conducted in US (0.73 kg CO<sub>2</sub>e kWh<sup>-1</sup> [<xref rid="pone.0234687.ref042" ref-type="bibr">42</xref>]). This apparent discrepancy is explained because in 2016, almost 66% of the electricity generated in Brazil was from hydropower, which has an emission factor of 0.074 kg CO<sub>2</sub>e kWh<sup>-1</sup> against 0.382 and 0.926 kg CO<sub>2</sub>e kWh<sup>-1</sup> produced by natural gas and hard coal, respectively [<xref rid="pone.0234687.ref046" ref-type="bibr">46</xref>].</p></sec><sec id="sec020"><title>Assumptions and limitations</title><p>The milk production and composition data are the average for a typical herd, which might have great animal-to-animal variability. Likewise, DM yield of crops and pastures were collected from experimental observations, and may change as a function of inter-annual variation, climatic conditions, soil type, fertilization level etc. The emission factors for direct and indirect N<sub>2</sub>O emissions from urine and dung were alternatively estimated using local data, but more experiments are necessary to reduce the uncertainty. The CO<sub>2</sub> emitted from lime and urea application was estimated from IPCC default values, which may not represent emissions in subtropical conditions. This LCA may be improved by reducing the uncertainty of factors for estimating emissions from excreta and feed production, including the C sequestration or emissions as a function of soil management.</p></sec><sec id="sec021"><title>Further considerations</title><p>The potential for using pasture can reduce the C footprint because milk production kept pace with animal confinement. However, if milk production is to decrease with lower TMR intake and inclusion of pasture [<xref rid="pone.0234687.ref019" ref-type="bibr">19</xref>], the C footprint would be expected to increase. Lorenz et al. [<xref rid="pone.0234687.ref022" ref-type="bibr">22</xref>] showed that an increase in milk yield from 5,000 to 6,000 kg ECM reduced the C footprint by 0.12 kg CO<sub>2</sub>e (kg ECM)<sup>-1</sup>, whereas an increase from 10,000 to 11,000 kg ECM reduced the C footprint by only 0.06 kg CO<sub>2</sub>e (kg ECM)<sup>-1</sup>. Hence, the impact of increasing milk production on decreasing C footprint is not linear, and mitigation measures, such as breeding for increased genetic yield potential and increasing concentrate ratio in the diet, are potentially harmful for animal&#x02019;s health and welfare [<xref rid="pone.0234687.ref070" ref-type="bibr">70</xref>]. For instance, increasing concentrate ratio potentially increases the occurrence of subclinical ketosis and foot lesions, and C footprint may increase by 0.03 kg CO<sub>2</sub>e (kg ECM)<sup>-1</sup> in subclinical ketosis [<xref rid="pone.0234687.ref071" ref-type="bibr">71</xref>] and by 0.02 kg CO<sub>2</sub>e (kg ECM)<sup>-1</sup> in case of foot lesions [<xref rid="pone.0234687.ref072" ref-type="bibr">72</xref>].</p><p>Grazing lands may also improve biodiversity [<xref rid="pone.0234687.ref073" ref-type="bibr">73</xref>]. Strategies such as zero tillage may increase stocks of soil C [<xref rid="pone.0234687.ref074" ref-type="bibr">74</xref>]. This study did not consider C sequestration during the growth of annual pastures, because it was assumed these grasses were planted with tillage, having a balance between C sequestration and C emissions [<xref rid="pone.0234687.ref038" ref-type="bibr">38</xref>]. Considering the C sequestration from no-tillage perennial pasture, the amount of C sequestration will more than compensates for C emitted. These results are in agreement with other authors who have shown that a reduction or elimination of soil tillage increases annual soil C sequestration in subtropical areas by 0.5 to 1.5 t ha<sup>-1</sup> [<xref rid="pone.0234687.ref075" ref-type="bibr">75</xref>]. If 50% of tilled areas were under perennial grasslands, 1.0 t C ha<sup>-1</sup> would be sequestered, further reducing the C footprint by 0.015 and 0.025 kg CO<sub>2</sub>e (kg ECM)<sup>-1</sup> for the scenarios using 75 and 50% TMR, respectively. Eliminating tillage, the reduction on total GHG emissions would be 0.03 and 0.05 kg CO<sub>2</sub>e (kg ECM)<sup>-1</sup> for 75 and 50% TMR, respectively. However, this approach may be controversial because lands which have been consistently managed for decades have approached steady state C storage, so that net exchange of CO<sub>2</sub> would be negligible [<xref rid="pone.0234687.ref076" ref-type="bibr">76</xref>].</p></sec></sec><sec sec-type="conclusions" id="sec022"><title>Conclusions</title><p>This study assessed the C footprint of dairy cattle systems with or without access to pastures. Including pastures showed potential to maintain or decrease to a small extent the C footprint, which may be attributable to the evidence of low N<sub>2</sub>O emissions from urine and dung in dairy systems in subtropical areas. Even though the enteric CH<sub>4</sub> intensity was the largest source of CO<sub>2</sub>e emissions, it did not change between different scenarios due to the narrow range of NDF content in diets and maintaining the same milk production with or without access to pastures.</p></sec></body><back><ack><p>Thanks to Anna Naranjo for helpful comments throughout the elaboration of this manuscript, and to Andr&#x000e9; Thaler Neto and Roberto Kappes for providing the key characteristics of the herd considered in this study.</p></ack><ref-list><title>References</title><ref id="pone.0234687.ref001"><label>1</label><mixed-citation publication-type="journal"><collab>IPCC</collab>. <article-title>Climate Change and Land</article-title>. <source>Chapter 5: Food Security</source>. <year>2019</year>.</mixed-citation></ref><ref id="pone.0234687.ref002"><label>2</label><mixed-citation publication-type="journal"><name><surname>Herrero</surname><given-names>M</given-names></name>, <name><surname>Henderson</surname><given-names>B</given-names></name>, <name><surname>Havl&#x000ed;k</surname><given-names>P</given-names></name>, <name><surname>Thornton</surname><given-names>PK</given-names></name>, <name><surname>Conant</surname><given-names>RT</given-names></name>, <name><surname>Smith</surname><given-names>P</given-names></name>, <etal>et al</etal>
<article-title>Greenhouse gas mitigation potentials in the livestock sector</article-title>. <source>Nat Clim Chang</source>. <year>2016</year>;<volume>6</volume>: <fpage>452</fpage>&#x02013;<lpage>461</lpage>. <pub-id pub-id-type="doi">10.1038/nclimate2925</pub-id></mixed-citation></ref><ref id="pone.0234687.ref003"><label>3</label><mixed-citation publication-type="journal"><name><surname>Rivera-Ferre</surname><given-names>MG</given-names></name>, <name><surname>L&#x000f3;pez-i-Gelats</surname><given-names>F</given-names></name>, <name><surname>Howden</surname><given-names>M</given-names></name>, <name><surname>Smith</surname><given-names>P</given-names></name>, <name><surname>Morton</surname><given-names>JF</given-names></name>, <name><surname>Herrero</surname><given-names>M</given-names></name>. <article-title>Re-framing the climate change debate in the livestock sector: mitigation and adaptation options</article-title>. <source>Wiley Interdiscip Rev Clim Chang</source>. <year>2016</year>;<volume>7</volume>: <fpage>869</fpage>&#x02013;<lpage>892</lpage>. <pub-id pub-id-type="doi">10.1002/wcc.421</pub-id></mixed-citation></ref><ref id="pone.0234687.ref004"><label>4</label><mixed-citation publication-type="journal"><name><surname>van Zanten</surname><given-names>HHE</given-names></name>, <name><surname>Mollenhorst</surname><given-names>H</given-names></name>, <name><surname>Klootwijk</surname><given-names>CW</given-names></name>, <name><surname>van Middelaar</surname><given-names>CE</given-names></name>, <name><surname>de Boer</surname><given-names>IJM</given-names></name>. <article-title>Global food supply: land use efficiency of livestock systems</article-title>. <source>Int J Life Cycle Assess</source>. <year>2016</year>;<volume>21</volume>: <fpage>747</fpage>&#x02013;<lpage>758</lpage>. <pub-id pub-id-type="doi">10.1007/s11367-015-0944-1</pub-id></mixed-citation></ref><ref id="pone.0234687.ref005"><label>5</label><mixed-citation publication-type="journal"><name><surname>Hristov</surname><given-names>AN</given-names></name>, <name><surname>Oh</surname><given-names>J</given-names></name>, <name><surname>Firkins</surname><given-names>L</given-names></name>, <name><surname>Dijkstra</surname><given-names>J</given-names></name>, <name><surname>Kebreab</surname><given-names>E</given-names></name>, <name><surname>Waghorn</surname><given-names>G</given-names></name>, <etal>et al</etal>
<article-title>SPECIAL TOPICS&#x02014;Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options</article-title>. <source>J Anim Sci</source>. <year>2013</year>;<volume>91</volume>: <fpage>5045</fpage>&#x02013;<lpage>5069</lpage>. <pub-id pub-id-type="doi">10.2527/jas.2013-6583</pub-id>
<pub-id pub-id-type="pmid">24045497</pub-id></mixed-citation></ref><ref id="pone.0234687.ref006"><label>6</label><mixed-citation publication-type="journal"><name><surname>Hristov</surname><given-names>AN</given-names></name>, <name><surname>Ott</surname><given-names>T</given-names></name>, <name><surname>Tricarico</surname><given-names>J</given-names></name>, <name><surname>Rotz</surname><given-names>A</given-names></name>, <name><surname>Waghorn</surname><given-names>G</given-names></name>, <name><surname>Adesogan</surname><given-names>A</given-names></name>, <etal>et al</etal>
<article-title>SPECIAL TOPICS&#x02014;Mitigation of methane and nitrous oxide emissions from animal operations: III. A review of animal management mitigation options</article-title>. <source>J Anim Sci</source>. <year>2013</year>;<volume>91</volume>: <fpage>5095</fpage>&#x02013;<lpage>5113</lpage>. <pub-id pub-id-type="doi">10.2527/jas.2013-6585</pub-id>
<pub-id pub-id-type="pmid">24045470</pub-id></mixed-citation></ref><ref id="pone.0234687.ref007"><label>7</label><mixed-citation publication-type="journal"><name><surname>Montes</surname><given-names>F</given-names></name>, <name><surname>Meinen</surname><given-names>R</given-names></name>, <name><surname>Dell</surname><given-names>C</given-names></name>, <name><surname>Rotz</surname><given-names>A</given-names></name>, <name><surname>Hristov</surname><given-names>AN</given-names></name>, <name><surname>Oh</surname><given-names>J</given-names></name>, <etal>et al</etal>
<article-title>SPECIAL TOPICS&#x02014;Mitigation of methane and nitrous oxide emissions from animal operations: II. A review of manure management mitigation options</article-title>. <source>J Anim Sci</source>. <year>2013</year>;<volume>91</volume>: <fpage>5070</fpage>&#x02013;<lpage>5094</lpage>. <pub-id pub-id-type="doi">10.2527/jas.2013-6584</pub-id>
<pub-id pub-id-type="pmid">24045493</pub-id></mixed-citation></ref><ref id="pone.0234687.ref008"><label>8</label><mixed-citation publication-type="journal"><name><surname>Ledgard</surname><given-names>SF</given-names></name>, <name><surname>Wei</surname><given-names>S</given-names></name>, <name><surname>Wang</surname><given-names>X</given-names></name>, <name><surname>Falconer</surname><given-names>S</given-names></name>, <name><surname>Zhang</surname><given-names>N</given-names></name>, <name><surname>Zhang</surname><given-names>X</given-names></name>, <etal>et al</etal>
<article-title>Nitrogen and carbon footprints of dairy farm systems in China and New Zealand, as influenced by productivity, feed sources and mitigations</article-title>. <source>Agric Water Manag</source>. <year>2019</year>;<volume>213</volume>: <fpage>155</fpage>&#x02013;<lpage>163</lpage>. <pub-id pub-id-type="doi">10.1016/j.agwat.2018.10.009</pub-id></mixed-citation></ref><ref id="pone.0234687.ref009"><label>9</label><mixed-citation publication-type="journal"><name><surname>O&#x02019;Brien</surname><given-names>D</given-names></name>, <name><surname>Shalloo</surname><given-names>L</given-names></name>, <name><surname>Patton</surname><given-names>J</given-names></name>, <name><surname>Buckley</surname><given-names>F</given-names></name>, <name><surname>Grainger</surname><given-names>C</given-names></name>, <name><surname>Wallace</surname><given-names>M</given-names></name>. <article-title>A life cycle assessment of seasonal grass-based and confinement dairy farms</article-title>. <source>Agric Syst</source>. <year>2012</year>;<volume>107</volume>: <fpage>33</fpage>&#x02013;<lpage>46</lpage>. <pub-id pub-id-type="doi">10.1016/j.agsy.2011.11.004</pub-id></mixed-citation></ref><ref id="pone.0234687.ref010"><label>10</label><mixed-citation publication-type="journal"><name><surname>Salou</surname><given-names>T</given-names></name>, <name><surname>Le Mou&#x000eb;l</surname><given-names>C</given-names></name>, <name><surname>van der Werf</surname><given-names>HMG</given-names></name>. <article-title>Environmental impacts of dairy system intensification: the functional unit matters!</article-title>
<source>J Clean Prod</source>. <year>2017</year>
<pub-id pub-id-type="doi">10.1016/j.jclepro.2016.05.019</pub-id></mixed-citation></ref><ref id="pone.0234687.ref011"><label>11</label><mixed-citation publication-type="journal"><name><surname>Lizarralde</surname><given-names>C</given-names></name>, <name><surname>Picasso</surname><given-names>V</given-names></name>, <name><surname>Rotz</surname><given-names>CA</given-names></name>, <name><surname>Cadenazzi</surname><given-names>M</given-names></name>, <name><surname>Astigarraga</surname><given-names>L</given-names></name>. <article-title>Practices to Reduce Milk Carbon Footprint on Grazing Dairy Farms in Southern Uruguay</article-title>: <source>Case Studies. Sustain Agric Res</source>. <year>2014</year>;<volume>3</volume>: <fpage>1</fpage>
<pub-id pub-id-type="doi">10.5539/sar.v3n2p1</pub-id></mixed-citation></ref><ref id="pone.0234687.ref012"><label>12</label><mixed-citation publication-type="journal"><name><surname>Clark</surname><given-names>CEF</given-names></name>, <name><surname>Kaur</surname><given-names>R</given-names></name>, <name><surname>Millapan</surname><given-names>LO</given-names></name>, <name><surname>Golder</surname><given-names>HM</given-names></name>, <name><surname>Thomson</surname><given-names>PC</given-names></name>, <name><surname>Horadagoda</surname><given-names>A</given-names></name>, <etal>et al</etal>
<article-title>The effect of temperate or tropical pasture grazing state and grain-based concentrate allocation on dairy cattle production and behavior</article-title>. <source>J Dairy Sci</source>. <year>2018</year>;<volume>101</volume>: <fpage>5454</fpage>&#x02013;<lpage>5465</lpage>. <pub-id pub-id-type="doi">10.3168/jds.2017-13388</pub-id>
<pub-id pub-id-type="pmid">29550132</pub-id></mixed-citation></ref><ref id="pone.0234687.ref013"><label>13</label><mixed-citation publication-type="journal"><collab>Food and Agriculture Organization</collab>. <article-title>FAOSTAT</article-title>. <year>2017</year>.</mixed-citation></ref><ref id="pone.0234687.ref014"><label>14</label><mixed-citation publication-type="journal"><name><surname>Vogeler</surname><given-names>I</given-names></name>, <name><surname>Mackay</surname><given-names>A</given-names></name>, <name><surname>Vibart</surname><given-names>R</given-names></name>, <name><surname>Rendel</surname><given-names>J</given-names></name>, <name><surname>Beautrais</surname><given-names>J</given-names></name>, <name><surname>Dennis</surname><given-names>S</given-names></name>. <article-title>Effect of inter-annual variability in pasture growth and irrigation response on farm productivity and profitability based on biophysical and farm systems modelling</article-title>. <source>Sci Total Environ</source>. <year>2016</year>;<volume>565</volume>: <fpage>564</fpage>&#x02013;<lpage>575</lpage>. <pub-id pub-id-type="doi">10.1016/j.scitotenv.2016.05.006</pub-id>
<pub-id pub-id-type="pmid">27203517</pub-id></mixed-citation></ref><ref id="pone.0234687.ref015"><label>15</label><mixed-citation publication-type="journal"><name><surname>Wilkinson</surname><given-names>JM</given-names></name>, <name><surname>Lee</surname><given-names>MRF</given-names></name>, <name><surname>Rivero</surname><given-names>MJ</given-names></name>, <name><surname>Chamberlain</surname><given-names>AT</given-names></name>. <article-title>Some challenges and opportunities for grazing dairy cows on temperate pastures</article-title>. <source>Grass Forage Sci.</source>
<year>2020</year>;<volume>75</volume>: <fpage>1</fpage>&#x02013;<lpage>17</lpage>. <pub-id pub-id-type="doi">10.1111/gfs.12458</pub-id>
<pub-id pub-id-type="pmid">32109974</pub-id></mixed-citation></ref><ref id="pone.0234687.ref016"><label>16</label><mixed-citation publication-type="journal"><name><surname>Wales</surname><given-names>WJ</given-names></name>, <name><surname>Marett</surname><given-names>LC</given-names></name>, <name><surname>Greenwood</surname><given-names>JS</given-names></name>, <name><surname>Wright</surname><given-names>MM</given-names></name>, <name><surname>Thornhill</surname><given-names>JB</given-names></name>, <name><surname>Jacobs</surname><given-names>JL</given-names></name>, <etal>et al</etal>
<article-title>Use of partial mixed rations in pasture-based dairying in temperate regions of Australia</article-title>. <source>Anim Prod Sci</source>. <year>2013</year>;<volume>53</volume>: <fpage>1167</fpage>&#x02013;<lpage>1178</lpage>. <pub-id pub-id-type="doi">10.1071/AN13207</pub-id></mixed-citation></ref><ref id="pone.0234687.ref017"><label>17</label><mixed-citation publication-type="journal"><name><surname>Bargo</surname><given-names>F</given-names></name>, <name><surname>Muller</surname><given-names>LD</given-names></name>, <name><surname>Delahoy</surname><given-names>JE</given-names></name>, <name><surname>Cassidy</surname><given-names>TW</given-names></name>. <article-title>Performance of high producing dairy cows with three different feeding systems combining pasture and total mixed rations</article-title>. <source>J Dairy Sci</source>. <year>2002</year>;<volume>85</volume>: <fpage>2948</fpage>&#x02013;<lpage>2963</lpage>. <pub-id pub-id-type="doi">10.3168/jds.S0022-0302(02)74381-6</pub-id>
<pub-id pub-id-type="pmid">12487461</pub-id></mixed-citation></ref><ref id="pone.0234687.ref018"><label>18</label><mixed-citation publication-type="journal"><name><surname>Vibart</surname><given-names>RE</given-names></name>, <name><surname>Fellner</surname><given-names>V</given-names></name>, <name><surname>Burns</surname><given-names>JC</given-names></name>, <name><surname>Huntington</surname><given-names>GB</given-names></name>, <name><surname>Green</surname><given-names>JT</given-names></name>. <article-title>Performance of lactating dairy cows fed varying levels of total mixed ration and pasture</article-title>. <source>J Dairy Res</source>. <year>2008</year>;<volume>75</volume>: <fpage>471</fpage>&#x02013;<lpage>480</lpage>. <pub-id pub-id-type="doi">10.1017/S0022029908003361</pub-id>
<pub-id pub-id-type="pmid">18701000</pub-id></mixed-citation></ref><ref id="pone.0234687.ref019"><label>19</label><mixed-citation publication-type="journal"><name><surname>Mendoza</surname><given-names>A</given-names></name>, <name><surname>Cajarville</surname><given-names>C</given-names></name>, <name><surname>Repetto</surname><given-names>JL</given-names></name>. <article-title>Short communication: Intake, milk production, and milk fatty acid profile of dairy cows fed diets combining fresh forage with a total mixed ration</article-title>. <source>J Dairy Sci</source>. <year>2016</year>;<volume>99</volume>: <fpage>1938</fpage>&#x02013;<lpage>1944</lpage>. <pub-id pub-id-type="doi">10.3168/jds.2015-10257</pub-id>
<pub-id pub-id-type="pmid">26778319</pub-id></mixed-citation></ref><ref id="pone.0234687.ref020"><label>20</label><mixed-citation publication-type="book"><collab>NRC</collab>. <source>Nutrient Requirements of Dairy Cattle</source>. <edition designator="7">7th ed.</edition>
<publisher-loc>Washington DC</publisher-loc>: <publisher-name>National Academy Press</publisher-name>; <year>2001</year>.</mixed-citation></ref><ref id="pone.0234687.ref021"><label>21</label><mixed-citation publication-type="book"><collab>INRA. INRA Feeding System for Ruminants</collab>. <name><surname>Noiz&#x000e8;re</surname><given-names>P</given-names></name>, <name><surname>Sauvant</surname><given-names>D</given-names></name>, <name><surname>Delaby</surname><given-names>L</given-names></name>, editors. <publisher-loc>Wageningen</publisher-loc>: <publisher-name>Wageningen Academic Publishiers</publisher-name>; <year>2018</year>
<pub-id pub-id-type="doi">10.3920/978-90-8686-872-8</pub-id></mixed-citation></ref><ref id="pone.0234687.ref022"><label>22</label><mixed-citation publication-type="journal"><name><surname>Lorenz</surname><given-names>H</given-names></name>, <name><surname>Reinsch</surname><given-names>T</given-names></name>, <name><surname>Hess</surname><given-names>S</given-names></name>, <name><surname>Taube</surname><given-names>F</given-names></name>. <article-title>Is low-input dairy farming more climate friendly? A meta-analysis of the carbon footprints of different production systems</article-title>. <source>J Clean Prod</source>. <year>2019</year>;<volume>211</volume>: <fpage>161</fpage>&#x02013;<lpage>170</lpage>. <pub-id pub-id-type="doi">10.1016/j.jclepro.2018.11.113</pub-id></mixed-citation></ref><ref id="pone.0234687.ref023"><label>23</label><mixed-citation publication-type="journal"><collab>ISO 14044</collab>. <source>INTERNATIONAL STANDARD&#x02014;Environmental management&#x02014;Life cycle assessment&#x02014;Requirements and guidelines</source>. <year>2006</year>;<volume>2006</volume>: <fpage>46</fpage>.</mixed-citation></ref><ref id="pone.0234687.ref024"><label>24</label><mixed-citation publication-type="journal"><collab>ISO 14040. The International Standards Organisation</collab>. <article-title>Environmental management&#x02014;Life cycle assessment&#x02014;Principles and framework</article-title>. <source>Iso 14040</source>. <year>2006</year>;<volume>2006</volume>: <fpage>1</fpage>&#x02013;<lpage>28</lpage>. <pub-id pub-id-type="doi">10.1136/bmj.332.7550.1107</pub-id></mixed-citation></ref><ref id="pone.0234687.ref025"><label>25</label><mixed-citation publication-type="book"><source>FAO. Environmental Performance of Large Ruminant Supply Chains: Guidelines for assessment</source>. <collab>Livestock Environmental Assessment and Performance Partnership</collab>, editor. <publisher-loc>Rome, Italy</publisher-loc>: <publisher-name>FAO</publisher-name>; <year>2016</year> Available: <ext-link ext-link-type="uri" xlink:href="http://www.fao.org/partnerships/leap/resources/guidelines/en/">http://www.fao.org/partnerships/leap/resources/guidelines/en/</ext-link></mixed-citation></ref><ref id="pone.0234687.ref026"><label>26</label><mixed-citation publication-type="journal"><name><surname>Civiero</surname><given-names>M</given-names></name>, <name><surname>Ribeiro-Filho</surname><given-names>HMN</given-names></name>, <name><surname>Schaitz</surname><given-names>LH</given-names></name>. <article-title>Pearl-millet grazing decreases daily methane emissions in dairy cows receiving total mixed ration</article-title>. <source>7th Greenhouse Gas and Animal Agriculture Conference,. Foz do Igua&#x000e7;u</source>; <year>2019</year> pp. <fpage>141</fpage>&#x02013;<lpage>141</lpage>.</mixed-citation></ref><ref id="pone.0234687.ref027"><label>27</label><mixed-citation publication-type="other">IPCC&#x02014;Intergovernmental Panel on Climate Change. Climate Change 2014 Synthesis Report (Unedited Version). 2014. Available: ttps://<ext-link ext-link-type="uri" xlink:href="http://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf">www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf</ext-link></mixed-citation></ref><ref id="pone.0234687.ref028"><label>28</label><mixed-citation publication-type="other">INRA. Alimentation des bovins, ovins et caprins. Besoins des animaux&#x02014;valeurs des aliments. Tables Inra 2007. 4th ed. INRA, editor. 2007.</mixed-citation></ref><ref id="pone.0234687.ref029"><label>29</label><mixed-citation publication-type="journal"><name><surname>Delagarde</surname><given-names>R</given-names></name>, <name><surname>Faverdin</surname><given-names>P</given-names></name>, <name><surname>Baratte</surname><given-names>C</given-names></name>, <name><surname>Peyraud</surname><given-names>JL</given-names></name>. <article-title>GrazeIn: a model of herbage intake and milk production for grazing dairy cows. 2. Prediction of intake under rotational and continuously stocked grazing management</article-title>. <source>Grass Forage Sci</source>. <year>2011</year>;<volume>66</volume>: <fpage>45</fpage>&#x02013;<lpage>60</lpage>. <pub-id pub-id-type="doi">10.1111/j.1365-2494.2010.00770.x</pub-id></mixed-citation></ref><ref id="pone.0234687.ref030"><label>30</label><mixed-citation publication-type="journal"><name><surname>Ma</surname><given-names>BL</given-names></name>, <name><surname>Liang</surname><given-names>BC</given-names></name>, <name><surname>Biswas</surname><given-names>DK</given-names></name>, <name><surname>Morrison</surname><given-names>MJ</given-names></name>, <name><surname>McLaughlin</surname><given-names>NB</given-names></name>. <article-title>The carbon footprint of maize production as affected by nitrogen fertilizer and maize-legume rotations</article-title>. <source>Nutr Cycl Agroecosystems</source>. <year>2012</year>;<volume>94</volume>: <fpage>15</fpage>&#x02013;<lpage>31</lpage>. <pub-id pub-id-type="doi">10.1007/s10705-012-9522-0</pub-id></mixed-citation></ref><ref id="pone.0234687.ref031"><label>31</label><mixed-citation publication-type="journal"><name><surname>Rauccci</surname><given-names>GS</given-names></name>, <name><surname>Moreira</surname><given-names>CS</given-names></name>, <name><surname>Alves</surname><given-names>PS</given-names></name>, <name><surname>Mello</surname><given-names>FFC</given-names></name>, <name><surname>Fraz&#x000e3;o</surname><given-names>LA</given-names></name>, <name><surname>Cerri</surname><given-names>CEP</given-names></name>, <etal>et al</etal>
<article-title>Greenhouse gas assessment of Brazilian soybean production: a case study of Mato Grosso State</article-title>. <source>J Clean Prod</source>. <year>2015</year>;<volume>96</volume>: <fpage>418</fpage>&#x02013;<lpage>425</lpage>.</mixed-citation></ref><ref id="pone.0234687.ref032"><label>32</label><mixed-citation publication-type="journal"><name><surname>Camargo</surname><given-names>GGT</given-names></name>, <name><surname>Ryan</surname><given-names>MR</given-names></name>, <name><surname>Richard</surname><given-names>TL</given-names></name>. <article-title>Energy Use and Greenhouse Gas Emissions from Crop Production Using the Farm Energy Analysis Tool</article-title>. <source>Bioscience</source>. <year>2013</year>;<volume>63</volume>: <fpage>263</fpage>&#x02013;<lpage>273</lpage>. <pub-id pub-id-type="doi">10.1525/bio.2013.63.4.6</pub-id></mixed-citation></ref><ref id="pone.0234687.ref033"><label>33</label><mixed-citation publication-type="journal"><name><surname>da Silva</surname><given-names>MSJ</given-names></name>, <name><surname>Jobim</surname><given-names>CC</given-names></name>, <name><surname>Poppi</surname><given-names>EC</given-names></name>, <name><surname>Tres</surname><given-names>TT</given-names></name>, <name><surname>Osmari</surname><given-names>MP</given-names></name>. <article-title>Production technology and quality of corn silage for feeding dairy cattle in Southern Brazil</article-title>. <source>Rev Bras Zootec</source>. <year>2015</year>;<volume>44</volume>: <fpage>303</fpage>&#x02013;<lpage>313</lpage>. <pub-id pub-id-type="doi">10.1590/S1806-92902015000900001</pub-id></mixed-citation></ref><ref id="pone.0234687.ref034"><label>34</label><mixed-citation publication-type="journal"><name><surname>Duchini PGPG</surname><given-names>Guzatti GCGC</given-names></name>, <name><surname>Ribeiro-Filho HMNHMNN</surname><given-names>Sbrissia AFAFAF</given-names></name>. <article-title>Intercropping black oat (Avena strigosa) and annual ryegrass (Lolium multiflorum) can increase pasture leaf production compared with their monocultures</article-title>. <source>Crop Pasture Sci</source>. <year>2016</year>;<volume>67</volume>: <fpage>574</fpage>&#x02013;<lpage>581</lpage>. <pub-id pub-id-type="doi">10.1071/CP15170</pub-id></mixed-citation></ref><ref id="pone.0234687.ref035"><label>35</label><mixed-citation publication-type="journal"><name><surname>Scaravelli</surname><given-names>LFB</given-names></name>, <name><surname>Pereira</surname><given-names>LET</given-names></name>, <name><surname>Olivo</surname><given-names>CJ</given-names></name>, <name><surname>Agnolin</surname><given-names>CA</given-names></name>. <article-title>Produ&#x000e7;&#x000e3;o e qualidade de pastagens de Coastcross-1 e milheto utilizadas com vacas leiteiras</article-title>. <source>Cienc Rural</source>. <year>2007</year>;<volume>37</volume>: <fpage>841</fpage>&#x02013;<lpage>846</lpage>.</mixed-citation></ref><ref id="pone.0234687.ref036"><label>36</label><mixed-citation publication-type="journal"><name><surname>Sbrissia</surname><given-names>AF</given-names></name>, <name><surname>Duchini</surname><given-names>PG</given-names></name>, <name><surname>Zanini</surname><given-names>GD</given-names></name>, <name><surname>Santos</surname><given-names>GT</given-names></name>, <name><surname>Padilha</surname><given-names>DA</given-names></name>, <name><surname>Schmitt</surname><given-names>D</given-names></name>. <article-title>Defoliation strategies in pastures submitted to intermittent stocking method: Underlying mechanisms buffering forage accumulation over a range of grazing heights</article-title>. <source>Crop Sci</source>. <year>2018</year>;<volume>58</volume>: <fpage>945</fpage>&#x02013;<lpage>954</lpage>. <pub-id pub-id-type="doi">10.2135/cropsci2017.07.0447</pub-id></mixed-citation></ref><ref id="pone.0234687.ref037"><label>37</label><mixed-citation publication-type="journal"><name><surname>Almeida</surname><given-names>JGR</given-names></name>, <name><surname>Dall-Orsoletta</surname><given-names>AC</given-names></name>, <name><surname>Oziemblowski</surname><given-names>MM</given-names></name>, <name><surname>Michelon</surname><given-names>GM</given-names></name>, <name><surname>Bayer</surname><given-names>C</given-names></name>, <name><surname>Edouard</surname><given-names>N</given-names></name>, <etal>et al</etal>
<article-title>Carbohydrate-rich supplements can improve nitrogen use efficiency and mitigate nitrogenous gas emissions from the excreta of dairy cows grazing temperate grass</article-title>. <source>Animal</source>. <year>2020</year>; <fpage>1</fpage>&#x02013;<lpage>12</lpage>. <pub-id pub-id-type="doi">10.1017/S1751731119003057</pub-id>
<pub-id pub-id-type="pmid">31907089</pub-id></mixed-citation></ref><ref id="pone.0234687.ref038"><label>38</label><mixed-citation publication-type="book"><collab>Intergovernamental Panel on Climate Change (IPCC)</collab>. <source>IPCC guidlines for national greenhouse gas inventories.</source>
<name><surname>Eggleston</surname><given-names>H.S.</given-names></name>, <name><surname>Buendia</surname><given-names>L.</given-names></name>, <name><surname>Miwa</surname><given-names>K</given-names></name>. NT and TK, editor. Hayama, Kanagawa, <publisher-loc>Japan</publisher-loc>: <publisher-name>Institute for Global Environmental Strategies</publisher-name>; <year>2006</year>.</mixed-citation></ref><ref id="pone.0234687.ref039"><label>39</label><mixed-citation publication-type="journal"><name><surname>Ramalho</surname><given-names>B</given-names></name>, <name><surname>Dieckow</surname><given-names>J</given-names></name>, <name><surname>Barth</surname><given-names>G</given-names></name>, <name><surname>Simon</surname><given-names>PL</given-names></name>, <name><surname>Mangrich</surname><given-names>AS</given-names></name>, <name><surname>Brevilieri</surname><given-names>RC</given-names></name>. <article-title>No-tillage and ryegrass grazing effects on stocks, stratification and lability of carbon and nitrogen in a subtropical Umbric Ferralsol</article-title>. <source>Eur J Soil Sci</source>. <year>2020</year>; <fpage>1</fpage>&#x02013;<lpage>14</lpage>. <pub-id pub-id-type="doi">10.1111/ejss.12933</pub-id></mixed-citation></ref><ref id="pone.0234687.ref040"><label>40</label><mixed-citation publication-type="journal"><name><surname>Fernandes</surname><given-names>HC</given-names></name>, <name><surname>da Silveira</surname><given-names>JCM</given-names></name>, <name><surname>Rinaldi</surname><given-names>PCN</given-names></name>. <article-title>Avalia&#x000e7;&#x000e3;o do custo energ&#x000e9;tico de diferentes opera&#x000e7;&#x000f5;es agr&#x000ed;colas mecanizadas</article-title>. <source>Cienc e Agrotecnologia</source>. <year>2008</year>;<volume>32</volume>: <fpage>1582</fpage>&#x02013;<lpage>1587</lpage>. <pub-id pub-id-type="doi">10.1590/s1413-70542008000500034</pub-id></mixed-citation></ref><ref id="pone.0234687.ref041"><label>41</label><mixed-citation publication-type="other">Wang M Q. GREET 1.8a Spreadsheet Model. 2007. Available: <ext-link ext-link-type="uri" xlink:href="http://www.transportation.anl.gov/software/GREET/">http://www.transportation.anl.gov/software/GREET/</ext-link></mixed-citation></ref><ref id="pone.0234687.ref042"><label>42</label><mixed-citation publication-type="journal"><name><surname>Rotz</surname><given-names>CAA</given-names></name>, <name><surname>Montes</surname><given-names>F</given-names></name>, <name><surname>Chianese</surname><given-names>DS</given-names></name>, <name><surname>Chiane</surname><given-names>DS</given-names></name>. <article-title>The carbon footprint of dairy production systems through partial life cycle assessment</article-title>. <source>J Dairy Sci</source>. <year>2010</year>;<volume>93</volume>: <fpage>1266</fpage>&#x02013;<lpage>1282</lpage>. <pub-id pub-id-type="doi">10.3168/jds.2009-2162</pub-id>
<pub-id pub-id-type="pmid">20172247</pub-id></mixed-citation></ref><ref id="pone.0234687.ref043"><label>43</label><mixed-citation publication-type="journal"><name><surname>Niu</surname><given-names>M</given-names></name>, <name><surname>Kebreab</surname><given-names>E</given-names></name>, <name><surname>Hristov</surname><given-names>AN</given-names></name>, <name><surname>Oh</surname><given-names>J</given-names></name>, <name><surname>Arndt</surname><given-names>C</given-names></name>, <name><surname>Bannink</surname><given-names>A</given-names></name>, <etal>et al</etal>
<article-title>Prediction of enteric methane production, yield, and intensity in dairy cattle using an intercontinental database</article-title>. <source>Glob Chang Biol</source>. <year>2018</year>;<volume>24</volume>: <fpage>3368</fpage>&#x02013;<lpage>3389</lpage>. <pub-id pub-id-type="doi">10.1111/gcb.14094</pub-id>
<pub-id pub-id-type="pmid">29450980</pub-id></mixed-citation></ref><ref id="pone.0234687.ref044"><label>44</label><mixed-citation publication-type="journal"><name><surname>Eug&#x000e8;ne</surname><given-names>M</given-names></name>, <name><surname>Sauvant</surname><given-names>D</given-names></name>, <name><surname>Nozi&#x000e8;re</surname><given-names>P</given-names></name>, <name><surname>Viallard</surname><given-names>D</given-names></name>, <name><surname>Oueslati</surname><given-names>K</given-names></name>, <name><surname>Lherm</surname><given-names>M</given-names></name>, <etal>et al</etal>
<article-title>A new Tier 3 method to calculate methane emission inventory for ruminants</article-title>. <source>J Environ Manage</source>. <year>2019</year>;<volume>231</volume>: <fpage>982</fpage>&#x02013;<lpage>988</lpage>. <pub-id pub-id-type="doi">10.1016/j.jenvman.2018.10.086</pub-id>
<pub-id pub-id-type="pmid">30602259</pub-id></mixed-citation></ref><ref id="pone.0234687.ref045"><label>45</label><mixed-citation publication-type="journal"><name><surname>Reed</surname><given-names>KF</given-names></name>, <name><surname>Moraes</surname><given-names>LE</given-names></name>, <name><surname>Casper</surname><given-names>DP</given-names></name>, <name><surname>Kebreab</surname><given-names>E</given-names></name>. <article-title>Predicting nitrogen excretion from cattle</article-title>. <source>J Dairy Sci</source>. <year>2015</year>;<volume>98</volume>: <fpage>3025</fpage>&#x02013;<lpage>3035</lpage>. <pub-id pub-id-type="doi">10.3168/jds.2014-8397</pub-id>
<pub-id pub-id-type="pmid">25747829</pub-id></mixed-citation></ref><ref id="pone.0234687.ref046"><label>46</label><mixed-citation publication-type="journal"><name><surname>Barros</surname><given-names>MV</given-names></name>, <name><surname>Piekarski</surname><given-names>CM</given-names></name>, <name><surname>De Francisco</surname><given-names>AC</given-names></name>. <article-title>Carbon footprint of electricity generation in Brazil: An analysis of the 2016&#x02013;2026 period</article-title>. <source>Energies</source>. <year>2018</year>;<fpage>11</fpage>
<pub-id pub-id-type="doi">10.3390/en11061412</pub-id></mixed-citation></ref><ref id="pone.0234687.ref047"><label>47</label><mixed-citation publication-type="journal"><name><surname>Ludington</surname><given-names>D</given-names></name>, <name><surname>Johnson</surname><given-names>E</given-names></name>. <article-title>Dairy Farm Energy Audit Summary</article-title>. <source>New York State Energy Res Dev Auth</source>. <year>2003</year>.</mixed-citation></ref><ref id="pone.0234687.ref048"><label>48</label><mixed-citation publication-type="journal"><name><surname>Thoma</surname><given-names>G</given-names></name>, <name><surname>Jolliet</surname><given-names>O</given-names></name>, <name><surname>Wang</surname><given-names>Y</given-names></name>. <article-title>A biophysical approach to allocation of life cycle environmental burdens for fluid milk supply chain analysis</article-title>. <source>Int Dairy J</source>. <year>2013</year>;<volume>31</volume>
<pub-id pub-id-type="doi">10.1016/j.idairyj.2012.08.012</pub-id></mixed-citation></ref><ref id="pone.0234687.ref049"><label>49</label><mixed-citation publication-type="journal"><name><surname>Naranjo</surname><given-names>A</given-names></name>, <name><surname>Johnson</surname><given-names>A</given-names></name>, <name><surname>Rossow</surname><given-names>H</given-names></name>. <article-title>Greenhouse gas, water, and land footprint per unit of production of the California dairy industry over 50 years</article-title>. <year>2020</year>
<pub-id pub-id-type="doi">10.3168/jds.2019-16576</pub-id>
<pub-id pub-id-type="pmid">32037166</pub-id></mixed-citation></ref><ref id="pone.0234687.ref050"><label>50</label><mixed-citation publication-type="journal"><name><surname>Jayasundara</surname><given-names>S</given-names></name>, <name><surname>Worden</surname><given-names>D</given-names></name>, <name><surname>Weersink</surname><given-names>A</given-names></name>, <name><surname>Wright</surname><given-names>T</given-names></name>, <name><surname>VanderZaag</surname><given-names>A</given-names></name>, <name><surname>Gordon</surname><given-names>R</given-names></name>, <etal>et al</etal>
<article-title>Improving farm profitability also reduces the carbon footprint of milk production in intensive dairy production systems</article-title>. <source>J Clean Prod</source>. <year>2019</year>;<volume>229</volume>: <fpage>1018</fpage>&#x02013;<lpage>1028</lpage>. <pub-id pub-id-type="doi">10.1016/j.jclepro.2019.04.013</pub-id></mixed-citation></ref><ref id="pone.0234687.ref051"><label>51</label><mixed-citation publication-type="journal"><name><surname>Williams</surname><given-names>SRO</given-names></name>, <name><surname>Fisher</surname><given-names>PD</given-names></name>, <name><surname>Berrisford</surname><given-names>T</given-names></name>, <name><surname>Moate</surname><given-names>PJ</given-names></name>, <name><surname>Reynard</surname><given-names>K</given-names></name>. <article-title>Reducing methane on-farm by feeding diets high in fat may not always reduce life cycle greenhouse gas emissions</article-title>. <source>Int J Life Cycle Assess</source>. <year>2014</year>;<volume>19</volume>: <fpage>69</fpage>&#x02013;<lpage>78</lpage>. <pub-id pub-id-type="doi">10.1007/s11367-013-0619-8</pub-id></mixed-citation></ref><ref id="pone.0234687.ref052"><label>52</label><mixed-citation publication-type="journal"><name><surname>Gollnow</surname><given-names>S</given-names></name>, <name><surname>Lundie</surname><given-names>S</given-names></name>, <name><surname>Moore</surname><given-names>AD</given-names></name>, <name><surname>McLaren</surname><given-names>J</given-names></name>, <name><surname>van Buuren</surname><given-names>N</given-names></name>, <name><surname>Stahle</surname><given-names>P</given-names></name>, <etal>et al</etal>
<article-title>Carbon footprint of milk production from dairy cows in Australia</article-title>. <source>Int Dairy J</source>. <year>2014</year>;<volume>37</volume>: <fpage>31</fpage>&#x02013;<lpage>38</lpage>. <pub-id pub-id-type="doi">10.1016/j.idairyj.2014.02.005</pub-id></mixed-citation></ref><ref id="pone.0234687.ref053"><label>53</label><mixed-citation publication-type="journal"><name><surname>O&#x02019;Brien</surname><given-names>D</given-names></name>, <name><surname>Capper</surname><given-names>JL</given-names></name>, <name><surname>Garnsworthy</surname><given-names>PC</given-names></name>, <name><surname>Grainger</surname><given-names>C</given-names></name>, <name><surname>Shalloo</surname><given-names>L</given-names></name>. <article-title>A case study of the carbon footprint of milk from high-performing confinement and grass-based dairy farms</article-title>. <source>J Dairy Sci</source>. <year>2014</year>
<pub-id pub-id-type="doi">10.3168/jds.2013-7174</pub-id>
<pub-id pub-id-type="pmid">24440256</pub-id></mixed-citation></ref><ref id="pone.0234687.ref054"><label>54</label><mixed-citation publication-type="journal"><name><surname>Chobtang</surname><given-names>J</given-names></name>, <name><surname>McLaren</surname><given-names>SJ</given-names></name>, <name><surname>Ledgard</surname><given-names>SF</given-names></name>, <name><surname>Donaghy</surname><given-names>DJ</given-names></name>. <article-title>Consequential Life Cycle Assessment of Pasture-based Milk Production: A Case Study in the Waikato Region, New Zealand</article-title>. <source>J Ind Ecol</source>. <year>2017</year>;<volume>21</volume>: <fpage>1139</fpage>&#x02013;<lpage>1152</lpage>. <pub-id pub-id-type="doi">10.1111/jiec.12484</pub-id></mixed-citation></ref><ref id="pone.0234687.ref055"><label>55</label><mixed-citation publication-type="journal"><name><surname>Garg</surname><given-names>MR</given-names></name>, <name><surname>Phondba</surname><given-names>BT</given-names></name>, <name><surname>Sherasia</surname><given-names>PL</given-names></name>, <name><surname>Makkar</surname><given-names>HPS</given-names></name>. <article-title>Carbon footprint of milk production under smallholder dairying in Anand district of Western India: A cradle-to-farm gate life cycle assessment</article-title>. <source>Anim Prod Sci</source>. <year>2016</year>;<volume>56</volume>: <fpage>423</fpage>&#x02013;<lpage>436</lpage>. <pub-id pub-id-type="doi">10.1071/AN15464</pub-id></mixed-citation></ref><ref id="pone.0234687.ref056"><label>56</label><mixed-citation publication-type="journal"><name><surname>de L&#x000e9;is</surname><given-names>CM</given-names></name>, <name><surname>Cherubini</surname><given-names>E</given-names></name>, <name><surname>Ruviaro</surname><given-names>CF</given-names></name>, <name><surname>Prud&#x000ea;ncio da Silva</surname><given-names>V</given-names></name>, <name><surname>do Nascimento Lampert</surname><given-names>V</given-names></name>, <name><surname>Spies</surname><given-names>A</given-names></name>, <etal>et al</etal>
<article-title>Carbon footprint of milk production in Brazil: a comparative case study</article-title>. <source>Int J Life Cycle Assess</source>. <year>2015</year>;<volume>20</volume>: <fpage>46</fpage>&#x02013;<lpage>60</lpage>. <pub-id pub-id-type="doi">10.1007/s11367-014-0813-3</pub-id></mixed-citation></ref><ref id="pone.0234687.ref057"><label>57</label><mixed-citation publication-type="journal"><name><surname>O&#x02019;Brien</surname><given-names>D</given-names></name>, <name><surname>Geoghegan</surname><given-names>A</given-names></name>, <name><surname>McNamara</surname><given-names>K</given-names></name>, <name><surname>Shalloo</surname><given-names>L</given-names></name>. <article-title>How can grass-based dairy farmers reduce the carbon footprint of milk?</article-title>
<source>Anim Prod Sci</source>. <year>2016</year>;<volume>56</volume>: <fpage>495</fpage>&#x02013;<lpage>500</lpage>. <pub-id pub-id-type="doi">10.1071/AN15490</pub-id></mixed-citation></ref><ref id="pone.0234687.ref058"><label>58</label><mixed-citation publication-type="journal"><name><surname>O&#x02019;Brien</surname><given-names>D</given-names></name>, <name><surname>Brennan</surname><given-names>P</given-names></name>, <name><surname>Humphreys</surname><given-names>J</given-names></name>, <name><surname>Ruane</surname><given-names>E</given-names></name>, <name><surname>Shalloo</surname><given-names>L</given-names></name>. <article-title>An appraisal of carbon footprint of milk from commercial grass-based dairy farms in Ireland according to a certified life cycle assessment methodology</article-title>. <source>Int J Life Cycle Assess</source>. <year>2014</year>;<volume>19</volume>: <fpage>1469</fpage>&#x02013;<lpage>1481</lpage>. <pub-id pub-id-type="doi">10.1007/s11367-014-0755-9</pub-id></mixed-citation></ref><ref id="pone.0234687.ref059"><label>59</label><mixed-citation publication-type="journal"><name><surname>Baek</surname><given-names>CY</given-names></name>, <name><surname>Lee</surname><given-names>KM</given-names></name>, <name><surname>Park</surname><given-names>KH</given-names></name>. <article-title>Quantification and control of the greenhouse gas emissions from a dairy cow system</article-title>. <source>J Clean Prod</source>. <year>2014</year>;<volume>70</volume>: <fpage>50</fpage>&#x02013;<lpage>60</lpage>. <pub-id pub-id-type="doi">10.1016/j.jclepro.2014.02.010</pub-id></mixed-citation></ref><ref id="pone.0234687.ref060"><label>60</label><mixed-citation publication-type="journal"><name><surname>Dall-Orsoletta</surname><given-names>AC</given-names></name>, <name><surname>Almeida</surname><given-names>JGR</given-names></name>, <name><surname>Carvalho</surname><given-names>PCF</given-names></name>, <name><surname>Savian J</surname><given-names>V</given-names></name>., <article-title>Ribeiro-Filho HMN. Ryegrass pasture combined with partial total mixed ration reduces enteric methane emissions and maintains the performance of dairy cows during mid to late lactation</article-title>. <source>J Dairy Sci</source>. <year>2016</year>;<volume>99</volume>: <fpage>4374</fpage>&#x02013;<lpage>4383</lpage>. <pub-id pub-id-type="doi">10.3168/jds.2015-10396</pub-id>
<pub-id pub-id-type="pmid">27016830</pub-id></mixed-citation></ref><ref id="pone.0234687.ref061"><label>61</label><mixed-citation publication-type="journal"><name><surname>Dall-Orsoletta</surname><given-names>AC</given-names></name>, <name><surname>Oziemblowski</surname><given-names>MM</given-names></name>, <name><surname>Berndt</surname><given-names>A</given-names></name>, <name><surname>Ribeiro-Filho</surname><given-names>HMN</given-names></name>. <article-title>Enteric methane emission from grazing dairy cows receiving corn silage or ground corn supplementation</article-title>. <source>Anim Feed Sci Technol</source>. <year>2019</year>;<volume>253</volume>: <fpage>65</fpage>&#x02013;<lpage>73</lpage>. <pub-id pub-id-type="doi">10.1016/j.anifeedsci.2019.05.009</pub-id></mixed-citation></ref><ref id="pone.0234687.ref062"><label>62</label><mixed-citation publication-type="journal"><name><surname>Niu</surname><given-names>M</given-names></name>, <name><surname>Appuhamy</surname><given-names>JADRN</given-names></name>, <name><surname>Leytem</surname><given-names>AB</given-names></name>, <name><surname>Dungan</surname><given-names>RS</given-names></name>, <name><surname>Kebreab</surname><given-names>E</given-names></name>. <article-title>Effect of dietary crude protein and forage contents on enteric methane emissions and nitrogen excretion from dairy cows simultaneously</article-title>. <source>Anim Prod Sci</source>. <year>2016</year>;<volume>56</volume>: <fpage>312</fpage>&#x02013;<lpage>321</lpage>. <pub-id pub-id-type="doi">10.1071/AN15498</pub-id></mixed-citation></ref><ref id="pone.0234687.ref063"><label>63</label><mixed-citation publication-type="journal"><name><surname>Waghorn</surname><given-names>GC</given-names></name>, <name><surname>Law</surname><given-names>N</given-names></name>, <name><surname>Bryant</surname><given-names>M</given-names></name>, <name><surname>Pacheco</surname><given-names>D</given-names></name>, <name><surname>Dalley</surname><given-names>D</given-names></name>. <article-title>Digestion and nitrogen excretion by Holstein-Friesian cows in late lactation offered ryegrass-based pasture supplemented with fodder beet</article-title>. <source>Anim Prod Sci</source>. <year>2019</year>;<volume>59</volume>: <fpage>1261</fpage>&#x02013;<lpage>1270</lpage>. <pub-id pub-id-type="doi">10.1071/AN18018</pub-id></mixed-citation></ref><ref id="pone.0234687.ref064"><label>64</label><mixed-citation publication-type="journal"><name><surname>Dickhoefer</surname><given-names>U</given-names></name>, <name><surname>Glowacki</surname><given-names>S</given-names></name>, <name><surname>G&#x000f3;mez</surname><given-names>CA</given-names></name>, <name><surname>Castro-Montoya</surname><given-names>JM</given-names></name>. <article-title>Forage and protein use efficiency in dairy cows grazing a mixed grass-legume pasture and supplemented with different levels of protein and starch</article-title>. <source>Livest Sci</source>. <year>2018</year>;<volume>216</volume>: <fpage>109</fpage>&#x02013;<lpage>118</lpage>. <pub-id pub-id-type="doi">10.1016/j.livsci.2018.08.004</pub-id></mixed-citation></ref><ref id="pone.0234687.ref065"><label>65</label><mixed-citation publication-type="journal"><name><surname>Schwab</surname><given-names>CG</given-names></name>, <name><surname>Broderick</surname><given-names>GA</given-names></name>. <article-title>A 100-Year Review: Protein and amino acid nutrition in dairy cows</article-title>. <source>J Dairy Sci</source>. <year>2017</year>;<volume>100</volume>: <fpage>10094</fpage>&#x02013;<lpage>10112</lpage>. <pub-id pub-id-type="doi">10.3168/jds.2017-13320</pub-id>
<pub-id pub-id-type="pmid">29153157</pub-id></mixed-citation></ref><ref id="pone.0234687.ref066"><label>66</label><mixed-citation publication-type="journal"><name><surname>Sordi</surname><given-names>A</given-names></name>, <name><surname>Dieckow</surname><given-names>J</given-names></name>, <name><surname>Bayer</surname><given-names>C</given-names></name>, <name><surname>Alburquerque</surname><given-names>MA</given-names></name>, <name><surname>Piva</surname><given-names>JT</given-names></name>, <name><surname>Zanatta</surname><given-names>JA</given-names></name>, <etal>et al</etal>
<article-title>Nitrous oxide emission factors for urine and dung patches in a subtropical Brazilian pastureland</article-title>. <source>Agric Ecosyst Environ</source>. <year>2014</year>;<volume>190</volume>: <fpage>94</fpage>&#x02013;<lpage>103</lpage>. <pub-id pub-id-type="doi">10.1016/j.agee.2013.09.004</pub-id></mixed-citation></ref><ref id="pone.0234687.ref067"><label>67</label><mixed-citation publication-type="journal"><name><surname>Simon</surname><given-names>PL</given-names></name>, <name><surname>Dieckow</surname><given-names>J</given-names></name>, <name><surname>de Klein</surname><given-names>CAM</given-names></name>, <name><surname>Zanatta</surname><given-names>JA</given-names></name>, <name><surname>van der Weerden</surname><given-names>TJ</given-names></name>, <name><surname>Ramalho</surname><given-names>B</given-names></name>, <etal>et al</etal>
<article-title>Nitrous oxide emission factors from cattle urine and dung, and dicyandiamide (DCD) as a mitigation strategy in subtropical pastures</article-title>. <source>Agric Ecosyst Environ</source>. <year>2018</year>;<volume>267</volume>: <fpage>74</fpage>&#x02013;<lpage>82</lpage>. <pub-id pub-id-type="doi">10.1016/j.agee.2018.08.013</pub-id></mixed-citation></ref><ref id="pone.0234687.ref068"><label>68</label><mixed-citation publication-type="journal"><name><surname>Wang</surname><given-names>X</given-names></name>, <name><surname>Ledgard</surname><given-names>S</given-names></name>, <name><surname>Luo</surname><given-names>J</given-names></name>, <name><surname>Guo</surname><given-names>Y</given-names></name>, <name><surname>Zhao</surname><given-names>Z</given-names></name>, <name><surname>Guo</surname><given-names>L</given-names></name>, <etal>et al</etal>
<article-title>Environmental impacts and resource use of milk production on the North China Plain, based on life cycle assessment</article-title>. <source>Sci Total Environ</source>. <year>2018</year>;<volume>625</volume>: <fpage>486</fpage>&#x02013;<lpage>495</lpage>. <pub-id pub-id-type="doi">10.1016/j.scitotenv.2017.12.259</pub-id>
<pub-id pub-id-type="pmid">29291563</pub-id></mixed-citation></ref><ref id="pone.0234687.ref069"><label>69</label><mixed-citation publication-type="journal"><name><surname>Pirlo</surname><given-names>G</given-names></name>, <name><surname>Lolli</surname><given-names>S</given-names></name>. <article-title>Environmental impact of milk production from samples of organic and conventional farms in Lombardy (Italy)</article-title>. <source>J Clean Prod</source>. <year>2019</year>;<volume>211</volume>: <fpage>962</fpage>&#x02013;<lpage>971</lpage>. <pub-id pub-id-type="doi">10.1016/j.jclepro.2018.11.070</pub-id></mixed-citation></ref><ref id="pone.0234687.ref070"><label>70</label><mixed-citation publication-type="journal"><name><surname>Herzog</surname><given-names>A</given-names></name>, <name><surname>Winckler</surname><given-names>C</given-names></name>, <name><surname>Zollitsch</surname><given-names>W</given-names></name>. <article-title>In pursuit of sustainability in dairy farming: A review of interdependent effects of animal welfare improvement and environmental impact mitigation</article-title>. <source>Agric Ecosyst Environ</source>. <year>2018</year>;<volume>267</volume>: <fpage>174</fpage>&#x02013;<lpage>187</lpage>. <pub-id pub-id-type="doi">10.1016/j.agee.2018.07.029</pub-id></mixed-citation></ref><ref id="pone.0234687.ref071"><label>71</label><mixed-citation publication-type="journal"><name><surname>Mostert</surname><given-names>PF</given-names></name>, <name><surname>van Middelaar</surname><given-names>CE</given-names></name>, <name><surname>Bokkers</surname><given-names>EAM</given-names></name>, <name><surname>de Boer</surname><given-names>IJM</given-names></name>. <article-title>The impact of subclinical ketosis in dairy cows on greenhouse gas emissions of milk production</article-title>. <source>J Clean Prod</source>. <year>2018</year>
<pub-id pub-id-type="doi">10.1016/j.jclepro.2017.10.019</pub-id></mixed-citation></ref><ref id="pone.0234687.ref072"><label>72</label><mixed-citation publication-type="journal"><name><surname>Mostert</surname><given-names>PF</given-names></name>, <name><surname>van Middelaar</surname><given-names>CE</given-names></name>, <name><surname>de Boer</surname><given-names>IJM</given-names></name>, <name><surname>Bokkers</surname><given-names>EAM</given-names></name>. <article-title>The impact of foot lesions in dairy cows on greenhouse gas emissions of milk production</article-title>. <source>Agric Syst</source>. <year>2018</year>;<volume>167</volume>: <fpage>206</fpage>&#x02013;<lpage>212</lpage>. <pub-id pub-id-type="doi">10.1016/j.agsy.2018.09.006</pub-id></mixed-citation></ref><ref id="pone.0234687.ref073"><label>73</label><mixed-citation publication-type="journal"><name><surname>Foley</surname><given-names>JA</given-names></name>, <name><surname>Ramankutty</surname><given-names>N</given-names></name>, <name><surname>Brauman</surname><given-names>KA</given-names></name>, <name><surname>Cassidy</surname><given-names>ES</given-names></name>, <name><surname>Gerber</surname><given-names>JS</given-names></name>, <name><surname>Johnston</surname><given-names>M</given-names></name>, <etal>et al</etal>
<article-title>Solutions for a cultivated planet</article-title>. <source>Nature</source>. <year>2011</year>;<volume>478</volume>: <fpage>337</fpage>&#x02013;<lpage>342</lpage>. <pub-id pub-id-type="doi">10.1038/nature10452</pub-id>
<pub-id pub-id-type="pmid">21993620</pub-id></mixed-citation></ref><ref id="pone.0234687.ref074"><label>74</label><mixed-citation publication-type="journal"><name><surname>Lal</surname><given-names>R.</given-names></name>
<article-title>Soil Carbon Sequestration Impacts on Global Climate Change and Food Security</article-title>. <source>Science (80-)</source>. <year>2004</year>;<volume>304</volume>: <fpage>1623</fpage>&#x02013;<lpage>1627</lpage>. <pub-id pub-id-type="doi">10.1126/science.1097396</pub-id>
<pub-id pub-id-type="pmid">15192216</pub-id></mixed-citation></ref><ref id="pone.0234687.ref075"><label>75</label><mixed-citation publication-type="journal"><name><surname>Boddey</surname><given-names>RM</given-names></name>, <name><surname>Jantalia</surname><given-names>CP</given-names></name>, <name><surname>Concei&#x000e7;ao</surname><given-names>PC</given-names></name>, <name><surname>Zanatta</surname><given-names>JA</given-names></name>, <name><surname>Bayer</surname><given-names>C</given-names></name>, <name><surname>Mielniczuk</surname><given-names>J</given-names></name>, <etal>et al</etal>
<article-title>Carbon accumulation at depth in Ferralsols under zero-till subtropical agriculture</article-title>. <source>Glob Chang Biol</source>. <year>2010</year>;<volume>16</volume>: <fpage>784</fpage>&#x02013;<lpage>795</lpage>. <pub-id pub-id-type="doi">10.1111/j.1365-2486.2009.02020.x</pub-id></mixed-citation></ref><ref id="pone.0234687.ref076"><label>76</label><mixed-citation publication-type="journal"><name><surname>McConkey</surname><given-names>B</given-names></name>, <name><surname>Angers</surname><given-names>D</given-names></name>, <name><surname>Bentham</surname><given-names>M</given-names></name>, <name><surname>Boehm</surname><given-names>M</given-names></name>, <name><surname>Brierley</surname><given-names>T</given-names></name>, <name><surname>Cerkowniak</surname><given-names>D</given-names></name>, <etal>et al</etal>
<article-title>Canadian agricultural greenhouse gas monitoring accounting and reporting system: methodology and greenhouse gas estimates for agricultural land in the LULUCF sector for NIR 2014</article-title>. <year>2014</year>.</mixed-citation></ref></ref-list></back></article>