Docling/docling/utils/accelerator_utils.py
William Easton 3089cf2d26
perf: Move expensive imports closer to usage (#1863)
* Move expensive imports closer to usage

Signed-off-by: William Easton <bill.easton@elastic.co>

* DCO Remediation Commit for William Easton <bill.easton@elastic.co>

I, William Easton <bill.easton@elastic.co>, hereby add my Signed-off-by to this commit: 8a7412ce5bb131a01bb6403067aeb948c9093b0b

Signed-off-by: William Easton <bill.easton@elastic.co>

* formatting fixes

Signed-off-by: William Easton <bill.easton@elastic.co>

* DCO Remediation Commit for William Easton <bill.easton@elastic.co>

I, William Easton <bill.easton@elastic.co>, hereby add my Signed-off-by to this commit: 8a7412ce5bb131a01bb6403067aeb948c9093b0b
I, William Easton <bill.easton@elastic.co>, hereby add my Signed-off-by to this commit: 963e34325071db5e844841f10c27b396a054a0a1

Signed-off-by: William Easton <bill.easton@elastic.co>

* Fix baseocrmodel test issue

Signed-off-by: William Easton <bill.easton@elastic.co>

---------

Signed-off-by: William Easton <bill.easton@elastic.co>
2025-07-01 22:27:17 +02:00

84 lines
2.8 KiB
Python

import logging
from typing import List, Optional
from docling.datamodel.accelerator_options import AcceleratorDevice
_log = logging.getLogger(__name__)
def decide_device(
accelerator_device: str, supported_devices: Optional[List[AcceleratorDevice]] = None
) -> str:
r"""
Resolve the device based on the acceleration options and the available devices in the system.
Rules:
1. AUTO: Check for the best available device on the system.
2. User-defined: Check if the device actually exists, otherwise fall-back to CPU
"""
import torch
device = "cpu"
has_cuda = torch.backends.cuda.is_built() and torch.cuda.is_available()
has_mps = torch.backends.mps.is_built() and torch.backends.mps.is_available()
if supported_devices is not None:
if has_cuda and AcceleratorDevice.CUDA not in supported_devices:
_log.info(
f"Removing CUDA from available devices because it is not in {supported_devices=}"
)
has_cuda = False
if has_mps and AcceleratorDevice.MPS not in supported_devices:
_log.info(
f"Removing MPS from available devices because it is not in {supported_devices=}"
)
has_mps = False
if accelerator_device == AcceleratorDevice.AUTO.value: # Handle 'auto'
if has_cuda:
device = "cuda:0"
elif has_mps:
device = "mps"
elif accelerator_device.startswith("cuda"):
if has_cuda:
# if cuda device index specified extract device id
parts = accelerator_device.split(":")
if len(parts) == 2 and parts[1].isdigit():
# select cuda device's id
cuda_index = int(parts[1])
if cuda_index < torch.cuda.device_count():
device = f"cuda:{cuda_index}"
else:
_log.warning(
"CUDA device 'cuda:%d' is not available. Fall back to 'CPU'.",
cuda_index,
)
elif len(parts) == 1: # just "cuda"
device = "cuda:0"
else:
_log.warning(
"Invalid CUDA device format '%s'. Fall back to 'CPU'",
accelerator_device,
)
else:
_log.warning("CUDA is not available in the system. Fall back to 'CPU'")
elif accelerator_device == AcceleratorDevice.MPS.value:
if has_mps:
device = "mps"
else:
_log.warning("MPS is not available in the system. Fall back to 'CPU'")
elif accelerator_device == AcceleratorDevice.CPU.value:
device = "cpu"
else:
_log.warning(
"Unknown device option '%s'. Fall back to 'CPU'", accelerator_device
)
_log.info("Accelerator device: '%s'", device)
return device