import logging import warnings import zipfile from collections.abc import Iterable from pathlib import Path from typing import List, Optional, Type import numpy from docling_core.types.doc import BoundingBox, CoordOrigin from docling_core.types.doc.page import BoundingRectangle, TextCell from docling.datamodel.accelerator_options import AcceleratorDevice, AcceleratorOptions from docling.datamodel.base_models import Page from docling.datamodel.document import ConversionResult from docling.datamodel.pipeline_options import ( EasyOcrOptions, OcrOptions, ) from docling.datamodel.settings import settings from docling.models.base_ocr_model import BaseOcrModel from docling.utils.accelerator_utils import decide_device from docling.utils.profiling import TimeRecorder from docling.utils.utils import download_url_with_progress _log = logging.getLogger(__name__) class EasyOcrModel(BaseOcrModel): _model_repo_folder = "EasyOcr" def __init__( self, enabled: bool, artifacts_path: Optional[Path], options: EasyOcrOptions, accelerator_options: AcceleratorOptions, ): super().__init__( enabled=enabled, artifacts_path=artifacts_path, options=options, accelerator_options=accelerator_options, ) self.options: EasyOcrOptions self.scale = 3 # multiplier for 72 dpi == 216 dpi. if self.enabled: try: import easyocr except ImportError: raise ImportError( "EasyOCR is not installed. Please install it via `pip install easyocr` to use this OCR engine. " "Alternatively, Docling has support for other OCR engines. See the documentation." ) if self.options.use_gpu is None: device = decide_device(accelerator_options.device) # Enable easyocr GPU if running on CUDA, MPS use_gpu = any( device.startswith(x) for x in [ AcceleratorDevice.CUDA.value, AcceleratorDevice.MPS.value, ] ) else: warnings.warn( "Deprecated field. Better to set the `accelerator_options.device` in `pipeline_options`. " "When `use_gpu and accelerator_options.device == AcceleratorDevice.CUDA` the GPU is used " "to run EasyOCR. Otherwise, EasyOCR runs in CPU." ) use_gpu = self.options.use_gpu download_enabled = self.options.download_enabled model_storage_directory = self.options.model_storage_directory if artifacts_path is not None and model_storage_directory is None: download_enabled = False model_storage_directory = str(artifacts_path / self._model_repo_folder) self.reader = easyocr.Reader( lang_list=self.options.lang, gpu=use_gpu, model_storage_directory=model_storage_directory, recog_network=self.options.recog_network, download_enabled=download_enabled, verbose=False, ) @staticmethod def download_models( detection_models: List[str] = ["craft"], recognition_models: List[str] = ["english_g2", "latin_g2"], local_dir: Optional[Path] = None, force: bool = False, progress: bool = False, ) -> Path: # Models are located in https://github.com/JaidedAI/EasyOCR/blob/master/easyocr/config.py from easyocr.config import ( detection_models as det_models_dict, recognition_models as rec_models_dict, ) if local_dir is None: local_dir = settings.cache_dir / "models" / EasyOcrModel._model_repo_folder local_dir.mkdir(parents=True, exist_ok=True) # Collect models to download download_list = [] for model_name in detection_models: if model_name in det_models_dict: download_list.append(det_models_dict[model_name]) for model_name in recognition_models: if model_name in rec_models_dict["gen2"]: download_list.append(rec_models_dict["gen2"][model_name]) # Download models for model_details in download_list: buf = download_url_with_progress(model_details["url"], progress=progress) with zipfile.ZipFile(buf, "r") as zip_ref: zip_ref.extractall(local_dir) return local_dir def __call__( self, conv_res: ConversionResult, page_batch: Iterable[Page] ) -> Iterable[Page]: if not self.enabled: yield from page_batch return for page in page_batch: assert page._backend is not None if not page._backend.is_valid(): yield page else: with TimeRecorder(conv_res, "ocr"): ocr_rects = self.get_ocr_rects(page) all_ocr_cells = [] for ocr_rect in ocr_rects: # Skip zero area boxes if ocr_rect.area() == 0: continue high_res_image = page._backend.get_page_image( scale=self.scale, cropbox=ocr_rect ) im = numpy.array(high_res_image) result = self.reader.readtext(im) del high_res_image del im cells = [ TextCell( index=ix, text=line[1], orig=line[1], from_ocr=True, confidence=line[2], rect=BoundingRectangle.from_bounding_box( BoundingBox.from_tuple( coord=( (line[0][0][0] / self.scale) + ocr_rect.l, (line[0][0][1] / self.scale) + ocr_rect.t, (line[0][2][0] / self.scale) + ocr_rect.l, (line[0][2][1] / self.scale) + ocr_rect.t, ), origin=CoordOrigin.TOPLEFT, ) ), ) for ix, line in enumerate(result) if line[2] >= self.options.confidence_threshold ] all_ocr_cells.extend(cells) # Post-process the cells page.cells = self.post_process_cells(all_ocr_cells, page.cells) # DEBUG code: if settings.debug.visualize_ocr: self.draw_ocr_rects_and_cells(conv_res, page, ocr_rects) yield page @classmethod def get_options_type(cls) -> Type[OcrOptions]: return EasyOcrOptions