import importlib import json import logging import time import warnings from enum import Enum from pathlib import Path from typing import Annotated, Dict, Iterable, List, Optional, Type import typer from docling_core.utils.file import resolve_file_source from docling.backend.docling_parse_backend import DoclingParseDocumentBackend from docling.backend.docling_parse_v2_backend import DoclingParseV2DocumentBackend from docling.backend.pdf_backend import PdfDocumentBackend from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend from docling.datamodel.base_models import ( ConversionStatus, FormatToExtensions, InputFormat, OutputFormat, ) from docling.datamodel.document import ConversionResult from docling.datamodel.pipeline_options import ( EasyOcrOptions, OcrOptions, PdfPipelineOptions, TableFormerMode, TesseractCliOcrOptions, TesseractOcrOptions, ) from docling.document_converter import DocumentConverter, FormatOption, PdfFormatOption warnings.filterwarnings(action="ignore", category=UserWarning, module="pydantic|torch") warnings.filterwarnings(action="ignore", category=FutureWarning, module="easyocr") _log = logging.getLogger(__name__) from rich.console import Console err_console = Console(stderr=True) app = typer.Typer( name="Docling", no_args_is_help=True, add_completion=False, pretty_exceptions_enable=False, ) def version_callback(value: bool): if value: docling_version = importlib.metadata.version("docling") docling_core_version = importlib.metadata.version("docling-core") docling_ibm_models_version = importlib.metadata.version("docling-ibm-models") docling_parse_version = importlib.metadata.version("docling-parse") print(f"Docling version: {docling_version}") print(f"Docling Core version: {docling_core_version}") print(f"Docling IBM Models version: {docling_ibm_models_version}") print(f"Docling Parse version: {docling_parse_version}") raise typer.Exit() # Define an enum for the backend options class PdfBackend(str, Enum): PYPDFIUM2 = "pypdfium2" DLPARSE_V1 = "dlparse_v1" DLPARSE_V2 = "dlparse_v2" # Define an enum for the ocr engines class OcrEngine(str, Enum): EASYOCR = "easyocr" TESSERACT_CLI = "tesseract_cli" TESSERACT = "tesseract" def export_documents( conv_results: Iterable[ConversionResult], output_dir: Path, export_json: bool, export_md: bool, export_txt: bool, export_doctags: bool, ): success_count = 0 failure_count = 0 for conv_res in conv_results: if conv_res.status == ConversionStatus.SUCCESS: success_count += 1 doc_filename = conv_res.input.file.stem # Export Deep Search document JSON format: if export_json: fname = output_dir / f"{doc_filename}.json" with fname.open("w", encoding="utf8") as fp: _log.info(f"writing JSON output to {fname}") fp.write(json.dumps(conv_res.document.export_to_dict())) # Export Text format: if export_txt: fname = output_dir / f"{doc_filename}.txt" with fname.open("w", encoding="utf8") as fp: _log.info(f"writing Text output to {fname}") fp.write(conv_res.document.export_to_markdown(strict_text=True)) # Export Markdown format: if export_md: fname = output_dir / f"{doc_filename}.md" with fname.open("w", encoding="utf8") as fp: _log.info(f"writing Markdown output to {fname}") fp.write(conv_res.document.export_to_markdown()) # Export Document Tags format: if export_doctags: fname = output_dir / f"{doc_filename}.doctags" with fname.open("w", encoding="utf8") as fp: _log.info(f"writing Doc Tags output to {fname}") fp.write(conv_res.document.export_to_document_tokens()) else: _log.warning(f"Document {conv_res.input.file} failed to convert.") failure_count += 1 _log.info( f"Processed {success_count + failure_count} docs, of which {failure_count} failed" ) @app.command(no_args_is_help=True) def convert( input_sources: Annotated[ List[str], typer.Argument( ..., metavar="source", help="PDF files to convert. Can be local file / directory paths or URL.", ), ], from_formats: List[InputFormat] = typer.Option( None, "--from", help="Specify input formats to convert from. Defaults to all formats.", ), to_formats: List[OutputFormat] = typer.Option( None, "--to", help="Specify output formats. Defaults to Markdown." ), ocr: Annotated[ bool, typer.Option( ..., help="If enabled, the bitmap content will be processed using OCR." ), ] = True, force_ocr: Annotated[ bool, typer.Option( ..., help="Replace any existing text with OCR generated text over the full content.", ), ] = False, ocr_engine: Annotated[ OcrEngine, typer.Option(..., help="The OCR engine to use.") ] = OcrEngine.EASYOCR, pdf_backend: Annotated[ PdfBackend, typer.Option(..., help="The PDF backend to use.") ] = PdfBackend.DLPARSE_V1, table_mode: Annotated[ TableFormerMode, typer.Option(..., help="The mode to use in the table structure model."), ] = TableFormerMode.FAST, artifacts_path: Annotated[ Optional[Path], typer.Option(..., help="If provided, the location of the model artifacts."), ] = None, abort_on_error: Annotated[ bool, typer.Option( ..., "--abort-on-error/--no-abort-on-error", help="If enabled, the bitmap content will be processed using OCR.", ), ] = False, output: Annotated[ Path, typer.Option(..., help="Output directory where results are saved.") ] = Path("."), version: Annotated[ Optional[bool], typer.Option( "--version", callback=version_callback, is_eager=True, help="Show version information.", ), ] = None, ): logging.basicConfig(level=logging.INFO) if from_formats is None: from_formats = [e for e in InputFormat] input_doc_paths: List[Path] = [] for src in input_sources: source = resolve_file_source(source=src) if not source.exists(): err_console.print( f"[red]Error: The input file {source} does not exist.[/red]" ) raise typer.Abort() elif source.is_dir(): for fmt in from_formats: for ext in FormatToExtensions[fmt]: input_doc_paths.extend(list(source.glob(f"**/*.{ext}"))) input_doc_paths.extend(list(source.glob(f"**/*.{ext.upper()}"))) else: input_doc_paths.append(source) if to_formats is None: to_formats = [OutputFormat.MARKDOWN] export_json = OutputFormat.JSON in to_formats export_md = OutputFormat.MARKDOWN in to_formats export_txt = OutputFormat.TEXT in to_formats export_doctags = OutputFormat.DOCTAGS in to_formats match ocr_engine: case OcrEngine.EASYOCR: ocr_options: OcrOptions = EasyOcrOptions(force_full_page_ocr=force_ocr) case OcrEngine.TESSERACT_CLI: ocr_options = TesseractCliOcrOptions(force_full_page_ocr=force_ocr) case OcrEngine.TESSERACT: ocr_options = TesseractOcrOptions(force_full_page_ocr=force_ocr) case _: raise RuntimeError(f"Unexpected OCR engine type {ocr_engine}") pipeline_options = PdfPipelineOptions( do_ocr=ocr, ocr_options=ocr_options, do_table_structure=True, ) pipeline_options.table_structure_options.do_cell_matching = True # do_cell_matching pipeline_options.table_structure_options.mode = table_mode if artifacts_path is not None: pipeline_options.artifacts_path = artifacts_path match pdf_backend: case PdfBackend.DLPARSE_V1: backend: Type[PdfDocumentBackend] = DoclingParseDocumentBackend case PdfBackend.DLPARSE_V2: backend = DoclingParseV2DocumentBackend case PdfBackend.PYPDFIUM2: backend = PyPdfiumDocumentBackend case _: raise RuntimeError(f"Unexpected PDF backend type {pdf_backend}") format_options: Dict[InputFormat, FormatOption] = { InputFormat.PDF: PdfFormatOption( pipeline_options=pipeline_options, backend=backend, # pdf_backend ) } doc_converter = DocumentConverter( allowed_formats=from_formats, format_options=format_options, ) start_time = time.time() conv_results = doc_converter.convert_all( input_doc_paths, raises_on_error=abort_on_error ) output.mkdir(parents=True, exist_ok=True) export_documents( conv_results, output_dir=output, export_json=export_json, export_md=export_md, export_txt=export_txt, export_doctags=export_doctags, ) end_time = time.time() - start_time _log.info(f"All documents were converted in {end_time:.2f} seconds.") if __name__ == "__main__": app()