
TableFormer: Table Structure Understanding with Transformers.

Ahmed Nassar, Nikolaos Livathinos, Maksym Lysak, Peter Staar
IBM Research

{ahn,nli,mly,taa}@zurich.ibm.com

Abstract

Tables organize valuable content in a concise and com-
pact representation. This content is extremely valuable for
systems such as search engines, Knowledge Graph’s, etc,
since they enhance their predictive capabilities. Unfortu-
nately, tables come in a large variety of shapes and sizes.
Furthermore, they can have complex column/row-header
configurations, multiline rows, different variety of separa-
tion lines, missing entries, etc. As such, the correct iden-
tification of the table-structure from an image is a non-
trivial task. In this paper, we present a new table-structure
identification model. The latter improves the latest end-to-
end deep learning model (i.e. encoder-dual-decoder from
PubTabNet) in two significant ways. First, we introduce a
new object detection decoder for table-cells. In this way,
we can obtain the content of the table-cells from program-
matic PDF’s directly from the PDF source and avoid the
training of the custom OCR decoders. This architectural
change leads to more accurate table-content extraction and
allows us to tackle non-english tables. Second, we replace
the LSTM decoders with transformer based decoders. This
upgrade improves significantly the previous state-of-the-art
tree-editing-distance-score (TEDS) from 91% to 98.5% on
simple tables and from 88.7% to 95% on complex tables.

1. Introduction
The occurrence of tables in documents is ubiquitous.

They often summarise quantitative or factual data, which is
cumbersome to describe in verbose text but nevertheless ex-
tremely valuable. Unfortunately, this compact representa-
tion is often not easy to parse by machines. There are many
implicit conventions used to obtain a compact table repre-
sentation. For example, tables often have complex column-
and row-headers in order to reduce duplicated cell content.
Lines of different shapes and sizes are leveraged to separate
content or indicate a tree structure. Additionally, tables can
also have empty/missing table-entries or multi-row textual
table-entries. Fig. 1 shows a table which presents all these
issues.

a. Picture of a table:

b. Red-annotation of bounding boxes,
Blue-predictions by TableFormer

c. Structure predicted by TableFormer:

10 2
3 4 5 6 7

8
9 10 11 12
13 14 15 16
17 18 19 20

10 2
3 4 5 6 7

8
9 10 11 12
13 14 15 16
17 18 19 20

1

3

3

2

2

2

1

1

3

Figure 1: Picture of a table with subtle, complex features
such as (1) multi-column headers, (2) cell with multi-row
text and (3) cells with no content. Image from PubTabNet
evaluation set, filename: ‘PMC2944238 004 02’.

Recently, significant progress has been made with vi-
sion based approaches to extract tables in documents. For
the sake of completeness, the issue of table extraction from
documents is typically decomposed into two separate chal-
lenges, i.e. (1) finding the location of the table(s) on a
document-page and (2) finding the structure of a given table
in the document.

The first problem is called table-location and has been
previously addressed [30, 38, 19, 21, 23, 26, 8] with state-
of-the-art object-detection networks (e.g. YOLO and later
on Mask-RCNN [9]). For all practical purposes, it can be

1

ar
X

iv
:2

20
3.

01
01

7v
2

 [
cs

.C
V

]
 1

1
M

ar
 2

02
2

considered as a solved problem, given enough ground-truth
data to train on.

The second problem is called table-structure decompo-
sition. The latter is a long standing problem in the com-
munity of document understanding [6, 4, 14]. Contrary to
the table-location problem, there are no commonly used ap-
proaches that can easily be re-purposed to solve this prob-
lem. Lately, a set of new model-architectures has been pro-
posed by the community to address table-structure decom-
position [37, 36, 18, 20]. All these models have some weak-
nesses (see Sec. 2). The common denominator here is the
reliance on textual features and/or the inability to provide
the bounding box of each table-cell in the original image.

In this paper, we want to address these weaknesses and
present a robust table-structure decomposition algorithm.
The design criteria for our model are the following. First,
we want our algorithm to be language agnostic. In this way,
we can obtain the structure of any table, irregardless of the
language. Second, we want our algorithm to leverage as
much data as possible from the original PDF document. For
programmatic PDF documents, the text-cells can often be
extracted much faster and with higher accuracy compared
to OCR methods. Last but not least, we want to have a di-
rect link between the table-cell and its bounding box in the
image.

To meet the design criteria listed above, we developed a
new model called TableFormer and a synthetically gener-
ated table structure dataset called SynthTabNet1. In partic-
ular, our contributions in this work can be summarised as
follows:

• We propose TableFormer, a transformer based model
that predicts tables structure and bounding boxes for
the table content simultaneously in an end-to-end ap-
proach.

• Across all benchmark datasets TableFormer signif-
icantly outperforms existing state-of-the-art metrics,
while being much more efficient in training and infer-
ence to existing works.

• We present SynthTabNet a synthetically generated
dataset, with various appearance styles and complex-
ity.

• An augmented dataset based on PubTabNet [37],
FinTabNet [36], and TableBank [17] with generated
ground-truth for reproducibility.

The paper is structured as follows. In Sec. 2, we give
a brief overview of the current state-of-the-art. In Sec. 3,
we describe the datasets on which we train. In Sec. 4, we
introduce the TableFormer model-architecture and describe

1https://github.com/IBM/SynthTabNet

its results & performance in Sec. 5. As a conclusion, we de-
scribe how this new model-architecture can be re-purposed
for other tasks in the computer-vision community.

2. Previous work and State of the Art
Identifying the structure of a table has been an outstand-

ing problem in the document-parsing community, that mo-
tivates many organised public challenges [6, 4, 14]. The
difficulty of the problem can be attributed to a number of
factors. First, there is a large variety in the shapes and sizes
of tables. Such large variety requires a flexible method.
This is especially true for complex column- and row head-
ers, which can be extremely intricate and demanding. A
second factor of complexity is the lack of data with regard
to table-structure. Until the publication of PubTabNet [37],
there were no large datasets (i.e. > 100K tables) that pro-
vided structure information. This happens primarily due to
the fact that tables are notoriously time-consuming to an-
notate by hand. However, this has definitely changed in re-
cent years with the deliverance of PubTabNet [37], FinTab-
Net [36], TableBank [17] etc.

Before the rising popularity of deep neural networks,
the community relied heavily on heuristic and/or statistical
methods to do table structure identification [3, 7, 11, 5, 13,
28]. Although such methods work well on constrained ta-
bles [12], a more data-driven approach can be applied due
to the advent of convolutional neural networks (CNNs) and
the availability of large datasets. To the best-of-our knowl-
edge, there are currently two different types of network ar-
chitecture that are being pursued for state-of-the-art table-
structure identification.

Image-to-Text networks: In this type of network, one
predicts a sequence of tokens starting from an encoded
image. Such sequences of tokens can be HTML table
tags [37, 17] or LaTeX symbols[10]. The choice of sym-
bols is ultimately not very important, since one can be trans-
formed into the other. There are however subtle variations
in the Image-to-Text networks. The easiest network archi-
tectures are “image-encoder→ text-decoder” (IETD), sim-
ilar to network architectures that try to provide captions to
images [32]. In these IETD networks, one expects as output
the LaTeX/HTML string of the entire table, i.e. the sym-
bols necessary for creating the table with the content of the
table. Another approach is the “image-encoder→ dual de-
coder” (IEDD) networks. In these type of networks, one has
two consecutive decoders with different purposes. The first
decoder is the tag-decoder, i.e. it only produces the HTM-
L/LaTeX tags which construct an empty table. The second
content-decoder uses the encoding of the image in combi-
nation with the output encoding of each cell-tag (from the
tag-decoder) to generate the textual content of each table
cell. The network architecture of IEDD is certainly more
elaborate, but it has the advantage that one can pre-train the

2

tag-decoder which is constrained to the table-tags.
In practice, both network architectures (IETD and

IEDD) require an implicit, custom trained object-character-
recognition (OCR) to obtain the content of the table-cells.
In the case of IETD, this OCR engine is implicit in the de-
coder similar to [24]. For the IEDD, the OCR is solely em-
bedded in the content-decoder. This reliance on a custom,
implicit OCR decoder is of course problematic. OCR is a
well known and extremely tough problem, that often needs
custom training for each individual language. However, the
limited availability for non-english content in the current
datasets, makes it impractical to apply the IETD and IEDD
methods on tables with other languages. Additionally, OCR
can be completely omitted if the tables originate from pro-
grammatic PDF documents with known positions of each
cell. The latter was the inspiration for the work of this pa-
per.

Graph Neural networks: Graph Neural networks
(GNN’s) take a radically different approach to table-
structure extraction. Note that one table cell can consti-
tute out of multiple text-cells. To obtain the table-structure,
one creates an initial graph, where each of the text-cells
becomes a node in the graph similar to [33, 34, 2]. Each
node is then associated with en embedding vector coming
from the encoded image, its coordinates and the encoded
text. Furthermore, nodes that represent adjacent text-cells
are linked. Graph Convolutional Networks (GCN’s) based
methods take the image as an input, but also the position of
the text-cells and their content [18]. The purpose of a GCN
is to transform the input graph into a new graph, which re-
places the old links with new ones. The new links then
represent the table-structure. With this approach, one can
avoid the need to build custom OCR decoders. However,
the quality of the reconstructed structure is not comparable
to the current state-of-the-art [18].

Hybrid Deep Learning-Rule-Based approach: A pop-
ular current model for table-structure identification is the
use of a hybrid Deep Learning-Rule-Based approach similar
to [27, 29]. In this approach, one first detects the position of
the table-cells with object detection (e.g. YoloVx or Mask-
RCNN), then classifies the table into different types (from
its images) and finally uses different rule-sets to obtain
its table-structure. Currently, this approach achieves state-
of-the-art results, but is not an end-to-end deep-learning
method. As such, new rules need to be written if different
types of tables are encountered.

3. Datasets
We rely on large-scale datasets such as PubTabNet [37],

FinTabNet [36], and TableBank [17] datasets to train and
evaluate our models. These datasets span over various ap-
pearance styles and content. We also introduce our own
synthetically generated SynthTabNet dataset to fix an im-

PubTabNet + FinTabNet

Rows / Columns
0 20 4010 30 500

20

40

60

80

10

30

50

70

90

0

10K

8K

6K

4K

2K

Figure 2: Distribution of the tables across different table
dimensions in PubTabNet + FinTabNet datasets

balance in the previous datasets.
The PubTabNet dataset contains 509k tables delivered as

annotated PNG images. The annotations consist of the table
structure represented in HTML format, the tokenized text
and its bounding boxes per table cell. Fig. 1 shows the ap-
pearance style of PubTabNet. Depending on its complexity,
a table is characterized as “simple” when it does not contain
row spans or column spans, otherwise it is “complex”. The
dataset is divided into Train and Val splits (roughly 98% and
2%). The Train split consists of 54% simple and 46% com-
plex tables and the Val split of 51% and 49% respectively.
The FinTabNet dataset contains 112k tables delivered as
single-page PDF documents with mixed table structures and
text content. Similarly to the PubTabNet, the annotations
of FinTabNet include the table structure in HTML, the to-
kenized text and the bounding boxes on a table cell basis.
The dataset is divided into Train, Test and Val splits (81%,
9.5%, 9.5%), and each one is almost equally divided into
simple and complex tables (Train: 48% simple, 52% com-
plex, Test: 48% simple, 52% complex, Test: 53% simple,
47% complex). Finally the TableBank dataset consists of
145k tables provided as JPEG images. The latter has anno-
tations for the table structure, but only few with bounding
boxes of the table cells. The entire dataset consists of sim-
ple tables and it is divided into 90% Train, 3% Test and 7%
Val splits.

Due to the heterogeneity across the dataset formats, it
was necessary to combine all available data into one homog-
enized dataset before we could train our models for practi-
cal purposes. Given the size of PubTabNet, we adopted its
annotation format and we extracted and converted all tables
as PNG images with a resolution of 72 dpi. Additionally,
we have filtered out tables with extreme sizes due to small

3

amount of such tables, and kept only those ones ranging
between 1*1 and 20*10 (rows/columns).

The availability of the bounding boxes for all table cells
is essential to train our models. In order to distinguish be-
tween empty and non-empty bounding boxes, we have in-
troduced a binary class in the annotation. Unfortunately, the
original datasets either omit the bounding boxes for whole
tables (e.g. TableBank) or they narrow their scope only to
non-empty cells. Therefore, it was imperative to introduce
a data pre-processing procedure that generates the missing
bounding boxes out of the annotation information. This pro-
cedure first parses the provided table structure and calcu-
lates the dimensions of the most fine-grained grid that cov-
ers the table structure. Notice that each table cell may oc-
cupy multiple grid squares due to row or column spans. In
case of PubTabNet we had to compute missing bounding
boxes for 48% of the simple and 69% of the complex ta-
bles. Regarding FinTabNet, 68% of the simple and 98%
of the complex tables require the generation of bounding
boxes.

As it is illustrated in Fig. 2, the table distributions from
all datasets are skewed towards simpler structures with
fewer number of rows/columns. Additionally, there is very
limited variance in the table styles, which in case of Pub-
TabNet and FinTabNet means one styling format for the
majority of the tables. Similar limitations appear also in
the type of table content, which in some cases (e.g. FinTab-
Net) is restricted to a certain domain. Ultimately, the lack
of diversity in the training dataset damages the ability of the
models to generalize well on unseen data.

Motivated by those observations we aimed at generating
a synthetic table dataset named SynthTabNet. This approach
offers control over: 1) the size of the dataset, 2) the table
structure, 3) the table style and 4) the type of content. The
complexity of the table structure is described by the size of
the table header and the table body, as well as the percentage
of the table cells covered by row spans and column spans.
A set of carefully designed styling templates provides the
basis to build a wide range of table appearances. Lastly, the
table content is generated out of a curated collection of text
corpora. By controlling the size and scope of the synthetic
datasets we are able to train and evaluate our models in a
variety of different conditions. For example, we can first
generate a highly diverse dataset to train our models and
then evaluate their performance on other synthetic datasets
which are focused on a specific domain.

In this regard, we have prepared four synthetic datasets,
each one containing 150k examples. The corpora to gener-
ate the table text consists of the most frequent terms appear-
ing in PubTabNet and FinTabNet together with randomly
generated text. The first two synthetic datasets have been
fine-tuned to mimic the appearance of the original datasets
but encompass more complicated table structures. The third

Tags Bbox Size Format
PubTabNet 3 3 509k PNG
FinTabNet 3 3 112k PDF
TableBank 3 7 145k JPEG
Combined-Tabnet(*) 3 3 400k PNG
Combined(**) 3 3 500k PNG
SynthTabNet 3 3 600k PNG

Table 1: Both “Combined-Tabnet” and ”Combined-
Tabnet” are variations of the following: (*) The Combined-
Tabnet dataset is the processed combination of PubTabNet
and Fintabnet. (**) The combined dataset is the processed
combination of PubTabNet, Fintabnet and TableBank.

one adopts a colorful appearance with high contrast and the
last one contains tables with sparse content. Lastly, we have
combined all synthetic datasets into one big unified syn-
thetic dataset of 600k examples.

Tab. 1 summarizes the various attributes of the datasets.

4. The TableFormer model
Given the image of a table, TableFormer is able to pre-

dict: 1) a sequence of tokens that represent the structure of
a table, and 2) a bounding box coupled to a subset of those
tokens. The conversion of an image into a sequence of to-
kens is a well-known task [35, 16]. While attention is often
used as an implicit method to associate each token of the
sequence with a position in the original image, an explicit
association between the individual table-cells and the image
bounding boxes is also required.

4.1. Model architecture.

We now describe in detail the proposed method, which
is composed of three main components, see Fig. 4. Our
CNN Backbone Network encodes the input as a feature vec-
tor of predefined length. The input feature vector of the
encoded image is passed to the Structure Decoder to pro-
duce a sequence of HTML tags that represent the structure
of the table. With each prediction of an HTML standard
data cell (‘<td>’) the hidden state of that cell is passed to
the Cell BBox Decoder. As for spanning cells, such as row
or column span, the tag is broken down to ‘<’, ‘rowspan=’
or ‘colspan=’, with the number of spanning cells (attribute),
and ‘>’. The hidden state attached to ‘<’ is passed to the
Cell BBox Decoder. A shared feed forward network (FFN)
receives the hidden states from the Structure Decoder, to
provide the final detection predictions of the bounding box
coordinates and their classification.

CNN Backbone Network. A ResNet-18 CNN is the
backbone that receives the table image and encodes it as a
vector of predefined length. The network has been modified
by removing the linear and pooling layer, as we are not per-

4

1. Item

AmountNames

1000
500

3500

150

unit
unit

unit

unit

2. Item

3. Item

4. Item

Extracted
Table Images Standardized

Images

BBox
Decoder

BBoxes

BBoxes can be
traced back to the
original image to
extract content

Structure Tags sequence
provide full description of

the table structure

Structure Tags

BBoxes in sync
with tag sequence

Encoder

Structure
Decoder

[x1, y2, x2, y2]
[x1', y2', x2', y2']
[x1'', y2'', x2'', y2'']
...

<TR>
<TD> 1 </TD><TD colspan="2"> </TD>
</TR><TR>
<TD> </TD><TD>...
...

1
2
3

2

3

3

21

1

Figure 3: TableFormer takes in an image of the PDF and creates bounding box and HTML structure predictions that are
synchronized. The bounding boxes grabs the content from the PDF and inserts it in the structure.

Input Image Tokenised Tags

Multi-Head Attention

Add & Normalisation

Feed Forward Network

Add & Normalisation

Linear

Softmax

CNN BACKBONE ENCODER

[30, 1, 2, 3, 4, … 3,
4, 5, 8, 31]

Positional
Encoding

Positional
Encoding

Add & Normalisation

Add & Normalisation

Multi-Head Attention

Add & Normalisation

Feed Forward Network

Linear

Linear

Attention Network

MLP Linear

Sigmoid

Tr
an

sf
or

m
er

 E
nc

od
er

 N
et

w
or

k
x2

Encoded Output

Encoded Output

Predicted Tags

Bounding Boxes &
Classification

Transformer
Decoder Network

x4

CELL BBOX DECODER

Masked Multi-Head
Attention

Figure 4: Given an input image of a table, the Encoder pro-
duces fixed-length features that represent the input image.
The features are then passed to both the Structure Decoder
and Cell BBox Decoder. During training, the Structure
Decoder receives ‘tokenized tags’ of the HTML code that
represent the table structure. Afterwards, a transformer en-
coder and decoder architecture is employed to produce fea-
tures that are received by a linear layer, and the Cell BBox
Decoder. The linear layer is applied to the features to
predict the tags. Simultaneously, the Cell BBox Decoder
selects features referring to the data cells (‘<td>’, ‘<’) and
passes them through an attention network, an MLP, and a
linear layer to predict the bounding boxes.

forming classification, and adding an adaptive pooling layer
of size 28*28. ResNet by default downsamples the image
resolution by 32 and then the encoded image is provided to
both the Structure Decoder, and Cell BBox Decoder.

Structure Decoder. The transformer architecture of this
component is based on the work proposed in [31]. After
extensive experimentation, the Structure Decoder is mod-
eled as a transformer encoder with two encoder layers and
a transformer decoder made from a stack of 4 decoder lay-
ers that comprise mainly of multi-head attention and feed
forward layers. This configuration uses fewer layers and
heads in comparison to networks applied to other problems
(e.g. “Scene Understanding”, “Image Captioning”), some-
thing which we relate to the simplicity of table images.

The transformer encoder receives an encoded image
from the CNN Backbone Network and refines it through a
multi-head dot-product attention layer, followed by a Feed
Forward Network. During training, the transformer de-
coder receives as input the output feature produced by the
transformer encoder, and the tokenized input of the HTML
ground-truth tags. Using a stack of multi-head attention lay-
ers, different aspects of the tag sequence could be inferred.
This is achieved by each attention head on a layer operating
in a different subspace, and then combining altogether their
attention score.

Cell BBox Decoder. Our architecture allows to simul-
taneously predict HTML tags and bounding boxes for each
table cell without the need of a separate object detector end
to end. This approach is inspired by DETR [1] which em-
ploys a Transformer Encoder, and Decoder that looks for
a specific number of object queries (potential object detec-
tions). As our model utilizes a transformer architecture, the
hidden state of the <td>’ and ‘<’ HTML structure tags be-
come the object query.

The encoding generated by the CNN Backbone Network
along with the features acquired for every data cell from the
Transformer Decoder are then passed to the attention net-
work. The attention network takes both inputs and learns to
provide an attention weighted encoding. This weighted at-

5

tention encoding is then multiplied to the encoded image to
produce a feature for each table cell. Notice that this is dif-
ferent than the typical object detection problem where im-
balances between the number of detections and the amount
of objects may exist. In our case, we know up front that
the produced detections always match with the table cells
in number and correspondence.

The output features for each table cell are then fed
into the feed-forward network (FFN). The FFN consists
of a Multi-Layer Perceptron (3 layers with ReLU activa-
tion function) that predicts the normalized coordinates for
the bounding box of each table cell. Finally, the predicted
bounding boxes are classified based on whether they are
empty or not using a linear layer.

Loss Functions. We formulate a multi-task loss Eq. 2
to train our network. The Cross-Entropy loss (denoted as
ls) is used to train the Structure Decoder which predicts the
structure tokens. As for the Cell BBox Decoder it is trained
with a combination of losses denoted as lbox. lbox consists
of the generally used l1 loss for object detection and the
IoU loss (liou) to be scale invariant as explained in [25]. In
comparison to DETR, we do not use the Hungarian algo-
rithm [15] to match the predicted bounding boxes with the
ground-truth boxes, as we have already achieved a one-to-
one match through two steps: 1) Our token input sequence
is naturally ordered, therefore the hidden states of the table
data cells are also in order when they are provided as in-
put to the Cell BBox Decoder, and 2) Our bounding boxes
generation mechanism (see Sec. 3) ensures a one-to-one
mapping between the cell content and its bounding box for
all post-processed datasets.

The loss used to train the TableFormer can be defined as
following:

lbox = λiouliou + λl1

l = λls + (1− λ)lbox
(1)

where λ ∈ [0, 1], and λiou, λl1 ∈ R are hyper-parameters.

5. Experimental Results

5.1. Implementation Details

TableFormer uses ResNet-18 as the CNN Backbone Net-
work. The input images are resized to 448*448 pixels and
the feature map has a dimension of 28*28. Additionally, we
enforce the following input constraints:

Image width and height ≤ 1024 pixels
Structural tags length ≤ 512 tokens.

(2)

Although input constraints are used also by other methods,
such as EDD, ours are less restrictive due to the improved

runtime performance and lower memory footprint of Table-
Former. This allows to utilize input samples with longer
sequences and images with larger dimensions.

The Transformer Encoder consists of two “Transformer
Encoder Layers”, with an input feature size of 512, feed
forward network of 1024, and 4 attention heads. As for the
Transformer Decoder it is composed of four “Transformer
Decoder Layers” with similar input and output dimensions
as the “Transformer Encoder Layers”. Even though our
model uses fewer layers and heads than the default imple-
mentation parameters, our extensive experimentation has
proved this setup to be more suitable for table images. We
attribute this finding to the inherent design of table im-
ages, which contain mostly lines and text, unlike the more
elaborate content present in other scopes (e.g. the COCO
dataset). Moreover, we have added ResNet blocks to the
inputs of the Structure Decoder and Cell BBox Decoder.
This prevents a decoder having a stronger influence over the
learned weights which would damage the other prediction
task (structure vs bounding boxes), but learn task specific
weights instead. Lastly our dropout layers are set to 0.5.

For training, TableFormer is trained with 3 Adam opti-
mizers, each one for the CNN Backbone Network, Structure
Decoder, and Cell BBox Decoder. Taking the PubTabNet as
an example for our parameter set up, the initializing learn-
ing rate is 0.001 for 12 epochs with a batch size of 24, and
λ set to 0.5. Afterwards, we reduce the learning rate to
0.0001, the batch size to 18 and train for 12 more epochs or
convergence.

TableFormer is implemented with PyTorch and Torchvi-
sion libraries [22]. To speed up the inference, the image
undergoes a single forward pass through the CNN Back-
bone Network and transformer encoder. This eliminates the
overhead of generating the same features for each decoding
step. Similarly, we employ a ’caching’ technique to preform
faster autoregressive decoding. This is achieved by storing
the features of decoded tokens so we can reuse them for
each time step. Therefore, we only compute the attention
for each new tag.

5.2. Generalization

TableFormer is evaluated on three major publicly avail-
able datasets of different nature to prove the generalization
and effectiveness of our model. The datasets used for eval-
uation are the PubTabNet, FinTabNet and TableBank which
stem from the scientific, financial and general domains re-
spectively.

We also share our baseline results on the challenging
SynthTabNet dataset. Throughout our experiments, the
same parameters stated in Sec. 5.1 are utilized.

6

5.3. Datasets and Metrics

The Tree-Edit-Distance-Based Similarity (TEDS) met-
ric was introduced in [37]. It represents the prediction, and
ground-truth as a tree structure of HTML tags. This simi-
larity is calculated as:

TEDS (Ta, Tb) = 1− EditDist (Ta, Tb)

max (|Ta| , |Tb|)
(3)

where Ta and Tb represent tables in tree structure HTML
format. EditDist denotes the tree-edit distance, and |T | rep-
resents the number of nodes in T .

5.4. Quantitative Analysis

Structure. As shown in Tab. 2, TableFormer outper-
forms all SOTA methods across different datasets by a large
margin for predicting the table structure from an image.
All the more, our model outperforms pre-trained methods.
During the evaluation we do not apply any table filtering.
We also provide our baseline results on the SynthTabNet
dataset. It has been observed that large tables (e.g. tables
that occupy half of the page or more) yield poor predictions.
We attribute this issue to the image resizing during the pre-
processing step, that produces downsampled images with
indistinguishable features. This problem can be addressed
by treating such big tables with a separate model which ac-
cepts a large input image size.

Model TEDS
Dataset Simple Complex All

EDD PTN 91.1 88.7 89.9
GTE PTN - - 93.01

TableFormer PTN 98.5 95.0 96.75
EDD FTN 88.4 92.08 90.6
GTE FTN - - 87.14

GTE (FT) FTN - - 91.02
TableFormer FTN 97.5 96.0 96.8

EDD TB 86.0 - 86.0
TableFormer TB 89.6 - 89.6

TableFormer STN 96.9 95.7 96.7

Table 2: Structure results on PubTabNet (PTN), FinTabNet
(FTN), TableBank (TB) and SynthTabNet (STN).
FT: Model was trained on PubTabNet then finetuned.

Cell Detection. Like any object detector, our Cell BBox
Detector provides bounding boxes that can be improved
with post-processing during inference. We make use of the
grid-like structure of tables to refine the predictions. A de-
tailed explanation on the post-processing is available in the
supplementary material. As shown in Tab. 3, we evaluate

our Cell BBox Decoder accuracy for cells with a class la-
bel of ‘content’ only using the PASCAL VOC mAP metric
for pre-processing and post-processing. Note that we do
not have post-processing results for SynthTabNet as images
are only provided. To compare the performance of our pro-
posed approach, we’ve integrated TableFormer’s Cell BBox
Decoder into EDD architecture. As mentioned previously,
the Structure Decoder provides the Cell BBox Decoder with
the features needed to predict the bounding box predictions.
Therefore, the accuracy of the Structure Decoder directly
influences the accuracy of the Cell BBox Decoder. If the
Structure Decoder predicts an extra column, this will result
in an extra column of predicted bounding boxes.

Model Dataset mAP mAP (PP)

EDD+BBox PubTabNet 79.2 82.7
TableFormer PubTabNet 82.1 86.8
TableFormer SynthTabNet 87.7 -

Table 3: Cell Bounding Box detection results on PubTab-
Net, and FinTabNet. PP: Post-processing.

Cell Content. In this section, we evaluate the entire
pipeline of recovering a table with content. Here we put
our approach to test by capitalizing on extracting content
from the PDF cells rather than decoding from images. Tab.
4 shows the TEDs score of HTML code representing the
structure of the table along with the content inserted in the
data cell and compared with the ground-truth. Our method
achieved a 5.3% increase over the state-of-the-art, and com-
mercial solutions. We believe our scores would be higher
if the HTML ground-truth matched the extracted PDF cell
content. Unfortunately, there are small discrepancies such
as spacings around words or special characters with various
unicode representations.

Model TEDS
Simple Complex All

Tabula 78.0 57.8 67.9
Traprange 60.8 49.9 55.4
Camelot 80.0 66.0 73.0

Acrobat Pro 68.9 61.8 65.3
EDD 91.2 85.4 88.3

TableFormer 95.4 90.1 93.6

Table 4: Results of structure with content retrieved using
cell detection on PubTabNet. In all cases the input is PDF
documents with cropped tables.

7

b. Structure predicted by TableFormer, with superimposed matched PDF cell text:

Japanese language (previously unseen by TableFormer): Example table from FinTabNet:

a. Red - PDF cells, Green - predicted bounding boxes, Blue - post-processed predictions matched to PDF cells

論文ファイル 参考文献

出典 ファイル数 英語 日本語 英語 日本語

Association for Computational Linguistics(ACL2003) 65 65 0 150 0
Computational Linguistics(COLING2002) 140 140 0 150 0
電気情報通信学会2003年総合大会 150 8 142 223 147

情報処理学会第65回全国大会(2003) 177 1 176 150 236

第17回人工知能学会全国大会(2003) 208 5 203 152 244

自然言語処理研究会第146〜155回 98 2 96 150 232

WWWから収集した論文 107 73 34 147 96

計 945 294 651 1122 955

Text is aligned to match original for ease of viewing

Weighted Average Grant Date Fair
Value

RSUs

Shares (in millions)

PSUs RSUs PSUs
Nonvested on January 1 1.1 0.3 90.10 $ $ 91.19
Granted 0.5 0.1 117.44 122.41
Vested (0.5) (0.1) 87.08 81.14
Canceled or forfeited (0.1) — 102.01 92.18
Nonvested on December 31 1.0 0.3 104.85 $ $ 104.51

Figure 5: One of the benefits of TableFormer is that it is language agnostic, as an example, the left part of the illustration
demonstrates TableFormer predictions on previously unseen language (Japanese). Additionally, we see that TableFormer is
robust to variability in style and content, right side of the illustration shows the example of the TableFormer prediction from
the FinTabNet dataset.

Red - PDF cells, Green - predicted bounding boxesGround Truth

16 17 18 19 20 21 22

23 24 25 26 27 28
30 31 32 33 34 35 36 37 38 39 40 41

42 43 44 45 46 47 48 49 50 51 52 53

0 1 2 3 4 5 6 7 8 9 10 11
12 13 14

15
29

Predicted Structure

Figure 6: An example of TableFormer predictions (bounding boxes and structure) from generated SynthTabNet table.

5.5. Qualitative Analysis

We showcase several visualizations for the different
components of our network on various “complex” tables
within datasets presented in this work in Fig. 5 and Fig. 6
As it is shown, our model is able to predict bounding boxes
for all table cells, even for the empty ones. Additionally,
our post-processing techniques can extract the cell content
by matching the predicted bounding boxes to the PDF cells
based on their overlap and spatial proximity. The left part
of Fig. 5 demonstrates also the adaptability of our method
to any language, as it can successfully extract Japanese
text, although the training set contains only English content.
We provide more visualizations including the intermediate
steps in the supplementary material. Overall these illustra-
tions justify the versatility of our method across a diverse
range of table appearances and content type.

6. Future Work & Conclusion

In this paper, we presented TableFormer an end-to-end
transformer based approach to predict table structures and
bounding boxes of cells from an image. This approach en-
ables us to recreate the table structure, and extract the cell
content from PDF or OCR by using bounding boxes. Ad-
ditionally, it provides the versatility required in real-world
scenarios when dealing with various types of PDF docu-
ments, and languages. Furthermore, our method outper-
forms all state-of-the-arts with a wide margin. Finally, we
introduce “SynthTabNet” a challenging synthetically gen-
erated dataset that reinforces missing characteristics from
other datasets.

References

[1] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-

8

end object detection with transformers. In Andrea Vedaldi,
Horst Bischof, Thomas Brox, and Jan-Michael Frahm, edi-
tors, Computer Vision – ECCV 2020, pages 213–229, Cham,
2020. Springer International Publishing. 5

[2] Zewen Chi, Heyan Huang, Heng-Da Xu, Houjin Yu, Wanx-
uan Yin, and Xian-Ling Mao. Complicated table structure
recognition. arXiv preprint arXiv:1908.04729, 2019. 3

[3] Bertrand Couasnon and Aurelie Lemaitre. Recognition of Ta-
bles and Forms, pages 647–677. Springer London, London,
2014. 2

[4] Hervé Déjean, Jean-Luc Meunier, Liangcai Gao, Yilun
Huang, Yu Fang, Florian Kleber, and Eva-Maria Lang. IC-
DAR 2019 Competition on Table Detection and Recognition
(cTDaR), Apr. 2019. http://sac.founderit.com/. 2

[5] Basilios Gatos, Dimitrios Danatsas, Ioannis Pratikakis, and
Stavros J Perantonis. Automatic table detection in document
images. In International Conference on Pattern Recognition
and Image Analysis, pages 609–618. Springer, 2005. 2

[6] Max Göbel, Tamir Hassan, Ermelinda Oro, and Giorgio Orsi.
Icdar 2013 table competition. In 2013 12th International
Conference on Document Analysis and Recognition, pages
1449–1453, 2013. 2

[7] EA Green and M Krishnamoorthy. Recognition of tables
using table grammars. procs. In Symposium on Document
Analysis and Recognition (SDAIR’95), pages 261–277. 2

[8] Khurram Azeem Hashmi, Alain Pagani, Marcus Liwicki, Di-
dier Stricker, and Muhammad Zeshan Afzal. Castabdetec-
tors: Cascade network for table detection in document im-
ages with recursive feature pyramid and switchable atrous
convolution. Journal of Imaging, 7(10), 2021. 1

[9] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), Oct 2017. 1

[10] Yelin He, X. Qi, Jiaquan Ye, Peng Gao, Yihao Chen, Bing-
cong Li, Xin Tang, and Rong Xiao. Pingan-vcgroup’s so-
lution for icdar 2021 competition on scientific table image
recognition to latex. ArXiv, abs/2105.01846, 2021. 2

[11] Jianying Hu, Ramanujan S Kashi, Daniel P Lopresti, and
Gordon Wilfong. Medium-independent table detection. In
Document Recognition and Retrieval VII, volume 3967,
pages 291–302. International Society for Optics and Photon-
ics, 1999. 2

[12] Matthew Hurst. A constraint-based approach to table struc-
ture derivation. In Proceedings of the Seventh International
Conference on Document Analysis and Recognition - Volume
2, ICDAR ’03, page 911, USA, 2003. IEEE Computer Soci-
ety. 2

[13] Thotreingam Kasar, Philippine Barlas, Sebastien Adam,
Clément Chatelain, and Thierry Paquet. Learning to detect
tables in scanned document images using line information.
In 2013 12th International Conference on Document Analy-
sis and Recognition, pages 1185–1189. IEEE, 2013. 2

[14] Pratik Kayal, Mrinal Anand, Harsh Desai, and Mayank
Singh. Icdar 2021 competition on scientific table image
recognition to latex, 2021. 2

[15] Harold W Kuhn. The hungarian method for the assignment
problem. Naval research logistics quarterly, 2(1-2):83–97,
1955. 6

[16] Girish Kulkarni, Visruth Premraj, Vicente Ordonez, Sag-
nik Dhar, Siming Li, Yejin Choi, Alexander C. Berg, and
Tamara L. Berg. Babytalk: Understanding and generat-
ing simple image descriptions. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 35(12):2891–2903,
2013. 4

[17] Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming
Zhou, and Zhoujun Li. Tablebank: A benchmark dataset
for table detection and recognition, 2019. 2, 3

[18] Yiren Li, Zheng Huang, Junchi Yan, Yi Zhou, Fan Ye, and
Xianhui Liu. Gfte: Graph-based financial table extraction.
In Alberto Del Bimbo, Rita Cucchiara, Stan Sclaroff, Gio-
vanni Maria Farinella, Tao Mei, Marco Bertini, Hugo Jair
Escalante, and Roberto Vezzani, editors, Pattern Recogni-
tion. ICPR International Workshops and Challenges, pages
644–658, Cham, 2021. Springer International Publishing. 2,
3

[19] Nikolaos Livathinos, Cesar Berrospi, Maksym Lysak, Vik-
tor Kuropiatnyk, Ahmed Nassar, Andre Carvalho, Michele
Dolfi, Christoph Auer, Kasper Dinkla, and Peter Staar. Ro-
bust pdf document conversion using recurrent neural net-
works. Proceedings of the AAAI Conference on Artificial
Intelligence, 35(17):15137–15145, May 2021. 1

[20] Rujiao Long, Wen Wang, Nan Xue, Feiyu Gao, Zhibo Yang,
Yongpan Wang, and Gui-Song Xia. Parsing table structures
in the wild. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 944–952, 2021. 2

[21] Shubham Singh Paliwal, D Vishwanath, Rohit Rahul,
Monika Sharma, and Lovekesh Vig. Tablenet: Deep learn-
ing model for end-to-end table detection and tabular data ex-
traction from scanned document images. In 2019 Interna-
tional Conference on Document Analysis and Recognition
(ICDAR), pages 128–133. IEEE, 2019. 1

[22] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E.
Fox, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc., 2019. 6

[23] Devashish Prasad, Ayan Gadpal, Kshitij Kapadni, Manish
Visave, and Kavita Sultanpure. Cascadetabnet: An approach
for end to end table detection and structure recognition from
image-based documents. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
Workshops, pages 572–573, 2020. 1

[24] Shah Rukh Qasim, Hassan Mahmood, and Faisal Shafait.
Rethinking table recognition using graph neural networks.
In 2019 International Conference on Document Analysis and
Recognition (ICDAR), pages 142–147. IEEE, 2019. 3

[25] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir
Sadeghian, Ian Reid, and Silvio Savarese. Generalized in-
tersection over union: A metric and a loss for bounding box
regression. In Proceedings of the IEEE/CVF Conference on

9

Computer Vision and Pattern Recognition, pages 658–666,
2019. 6

[26] Sebastian Schreiber, Stefan Agne, Ivo Wolf, Andreas Den-
gel, and Sheraz Ahmed. Deepdesrt: Deep learning for detec-
tion and structure recognition of tables in document images.
In 2017 14th IAPR International Conference on Document
Analysis and Recognition (ICDAR), volume 01, pages 1162–
1167, 2017. 1

[27] Sebastian Schreiber, Stefan Agne, Ivo Wolf, Andreas Den-
gel, and Sheraz Ahmed. Deepdesrt: Deep learning for de-
tection and structure recognition of tables in document im-
ages. In 2017 14th IAPR international conference on doc-
ument analysis and recognition (ICDAR), volume 1, pages
1162–1167. IEEE, 2017. 3

[28] Faisal Shafait and Ray Smith. Table detection in heteroge-
neous documents. In Proceedings of the 9th IAPR Interna-
tional Workshop on Document Analysis Systems, pages 65–
72, 2010. 2

[29] Shoaib Ahmed Siddiqui, Imran Ali Fateh, Syed Tah-
seen Raza Rizvi, Andreas Dengel, and Sheraz Ahmed.
Deeptabstr: Deep learning based table structure recognition.
In 2019 International Conference on Document Analysis and
Recognition (ICDAR), pages 1403–1409. IEEE, 2019. 3

[30] Peter W J Staar, Michele Dolfi, Christoph Auer, and Costas
Bekas. Corpus conversion service: A machine learning plat-
form to ingest documents at scale. In Proceedings of the
24th ACM SIGKDD, KDD ’18, pages 774–782, New York,
NY, USA, 2018. ACM. 1

[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Il-
lia Polosukhin. Attention is all you need. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural In-
formation Processing Systems 30, pages 5998–6008. Curran
Associates, Inc., 2017. 5

[32] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Du-
mitru Erhan. Show and tell: A neural image caption gen-
erator. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2015. 2

[33] Wenyuan Xue, Qingyong Li, and Dacheng Tao. Res2tim:
reconstruct syntactic structures from table images. In 2019
International Conference on Document Analysis and Recog-
nition (ICDAR), pages 749–755. IEEE, 2019. 3

[34] Wenyuan Xue, Baosheng Yu, Wen Wang, Dacheng Tao,
and Qingyong Li. Tgrnet: A table graph reconstruction
network for table structure recognition. arXiv preprint
arXiv:2106.10598, 2021. 3

[35] Quanzeng You, Hailin Jin, Zhaowen Wang, Chen Fang, and
Jiebo Luo. Image captioning with semantic attention. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4651–4659, 2016. 4

[36] Xinyi Zheng, Doug Burdick, Lucian Popa, Peter Zhong, and
Nancy Xin Ru Wang. Global table extractor (gte): A frame-
work for joint table identification and cell structure recogni-
tion using visual context. Winter Conference for Applications
in Computer Vision (WACV), 2021. 2, 3

[37] Xu Zhong, Elaheh ShafieiBavani, and Antonio Ji-
meno Yepes. Image-based table recognition: Data, model,

and evaluation. In Andrea Vedaldi, Horst Bischof, Thomas
Brox, and Jan-Michael Frahm, editors, Computer Vision –
ECCV 2020, pages 564–580, Cham, 2020. Springer Interna-
tional Publishing. 2, 3, 7

[38] Xu Zhong, Jianbin Tang, and Antonio Jimeno Yepes. Pub-
laynet: Largest dataset ever for document layout analysis. In
2019 International Conference on Document Analysis and
Recognition (ICDAR), pages 1015–1022, 2019. 1

10

TableFormer: Table Structure Understanding with Transformers
Supplementary Material

1. Details on the datasets
1.1. Data preparation

As a first step of our data preparation process, we have
calculated statistics over the datasets across the following
dimensions: (1) table size measured in the number of rows
and columns, (2) complexity of the table, (3) strictness of
the provided HTML structure and (4) completeness (i.e. no
omitted bounding boxes). A table is considered to be simple
if it does not contain row spans or column spans. Addition-
ally, a table has a strict HTML structure if every row has the
same number of columns after taking into account any row
or column spans. Therefore a strict HTML structure looks
always rectangular. However, HTML is a lenient encoding
format, i.e. tables with rows of different sizes might still
be regarded as correct due to implicit display rules. These
implicit rules leave room for ambiguity, which we want to
avoid. As such, we prefer to have ”strict” tables, i.e. tables
where every row has exactly the same length.

We have developed a technique that tries to derive a
missing bounding box out of its neighbors. As a first step,
we use the annotation data to generate the most fine-grained
grid that covers the table structure. In case of strict HTML
tables, all grid squares are associated with some table cell
and in the presence of table spans a cell extends across mul-
tiple grid squares. When enough bounding boxes are known
for a rectangular table, it is possible to compute the geo-
metrical border lines between the grid rows and columns.
Eventually this information is used to generate the missing
bounding boxes. Additionally, the existence of unused grid
squares indicates that the table rows have unequal number
of columns and the overall structure is non-strict. The gen-
eration of missing bounding boxes for non-strict HTML ta-
bles is ambiguous and therefore quite challenging. Thus,
we have decided to simply discard those tables. In case of
PubTabNet we have computed missing bounding boxes for
48% of the simple and 69% of the complex tables. Regard-
ing FinTabNet, 68% of the simple and 98% of the complex
tables require the generation of bounding boxes.

Figure 7 illustrates the distribution of the tables across
different dimensions per dataset.

1.2. Synthetic datasets

Aiming to train and evaluate our models in a broader
spectrum of table data we have synthesized four types of
datasets. Each one contains tables with different appear-

ances in regard to their size, structure, style and content.
Every synthetic dataset contains 150k examples, summing
up to 600k synthetic examples. All datasets are divided into
Train, Test and Val splits (80%, 10%, 10%).

The process of generating a synthetic dataset can be de-
composed into the following steps:

1. Prepare styling and content templates: The styling
templates have been manually designed and organized into
groups of scope specific appearances (e.g. financial data,
marketing data, etc.) Additionally, we have prepared cu-
rated collections of content templates by extracting the most
frequently used terms out of non-synthetic datasets (e.g.
PubTabNet, FinTabNet, etc.).

2. Generate table structures: The structure of each syn-
thetic dataset assumes a horizontal table header which po-
tentially spans over multiple rows and a table body that
may contain a combination of row spans and column spans.
However, spans are not allowed to cross the header - body
boundary. The table structure is described by the parame-
ters: Total number of table rows and columns, number of
header rows, type of spans (header only spans, row only
spans, column only spans, both row and column spans),
maximum span size and the ratio of the table area covered
by spans.

3. Generate content: Based on the dataset theme, a set of
suitable content templates is chosen first. Then, this content
can be combined with purely random text to produce the
synthetic content.

4. Apply styling templates: Depending on the domain
of the synthetic dataset, a set of styling templates is first
manually selected. Then, a style is randomly selected to
format the appearance of the synthesized table.

5. Render the complete tables: The synthetic table is
finally rendered by a web browser engine to generate the
bounding boxes for each table cell. A batching technique is
utilized to optimize the runtime overhead of the rendering
process.

2. Prediction post-processing for PDF docu-
ments

Although TableFormer can predict the table structure and
the bounding boxes for tables recognized inside PDF docu-
ments, this is not enough when a full reconstruction of the
original table is required. This happens mainly due the fol-
lowing reasons:

11

PubTabNetb. FinTabNet Table Bank

Train

Complex

Simple

Complex

Simple

Simple

Val

100% 500K 10K

Train Test Val

100% 91K 10K10K

Train Test Val

100% 130K 5K 10K

Complex

Non
Strict
HTML

Strict
HTML

Simple

230K 280K 65K

Complex

Non
Strict
HTML

Strict
HTML

Simple

47K

Simple

Non
Strict
HTML

145K

Complex

Contain
Missing
bboxes Contain

Missing
bboxes

Dataset
doesn't
provide
bboxes

Simple

230K 280K 65K

Complex Simple

47K

Simple

145K

Figure 7: Distribution of the tables across different dimensions per dataset. Simple vs complex tables per dataset and split,
strict vs non strict html structures per dataset and table complexity, missing bboxes per dataset and table complexity.

• TableFormer output does not include the table cell con-
tent.

• There are occasional inaccuracies in the predictions of
the bounding boxes.

However, it is possible to mitigate those limitations by
combining the TableFormer predictions with the informa-
tion already present inside a programmatic PDF document.
More specifically, PDF documents can be seen as a se-
quence of PDF cells where each cell is described by its con-
tent and bounding box. If we are able to associate the PDF
cells with the predicted table cells, we can directly link the
PDF cell content to the table cell structure and use the PDF
bounding boxes to correct misalignments in the predicted
table cell bounding boxes.

Here is a step-by-step description of the prediction post-
processing:

1. Get the minimal grid dimensions - number of rows and
columns for the predicted table structure. This represents
the most granular grid for the underlying table structure.

2. Generate pair-wise matches between the bounding
boxes of the PDF cells and the predicted cells. The Intersec-
tion Over Union (IOU) metric is used to evaluate the quality
of the matches.

3. Use a carefully selected IOU threshold to designate
the matches as “good” ones and “bad” ones.

3.a. If all IOU scores in a column are below the thresh-
old, discard all predictions (structure and bounding boxes)
for that column.

4. Find the best-fitting content alignment for the pre-
dicted cells with good IOU per each column. The alignment
of the column can be identified by the following formula:

alignment = argmin
c
{Dc}

Dc = max{xc} −min{xc}
(4)

where c is one of {left, centroid, right} and xc is the x-
coordinate for the corresponding point.

5. Use the alignment computed in step 4, to compute
the median x-coordinate for all table columns and the me-

dian cell size for all table cells. The usage of median dur-
ing the computations, helps to eliminate outliers caused by
occasional column spans which are usually wider than the
normal.

6. Snap all cells with bad IOU to their corresponding
median x-coordinates and cell sizes.

7. Generate a new set of pair-wise matches between the
corrected bounding boxes and PDF cells. This time use a
modified version of the IOU metric, where the area of the
intersection between the predicted and PDF cells is divided
by the PDF cell area. In case there are multiple matches
for the same PDF cell, the prediction with the higher score
is preferred. This covers the cases where the PDF cells are
smaller than the area of predicted or corrected prediction
cells.

8. In some rare occasions, we have noticed that Table-
Former can confuse a single column as two. When the post-
processing steps are applied, this results with two predicted
columns pointing to the same PDF column. In such case
we must de-duplicate the columns according to highest to-
tal column intersection score.

9. Pick up the remaining orphan cells. There could be
cases, when after applying all the previous post-processing
steps, some PDF cells could still remain without any match
to predicted cells. However, it is still possible to deduce
the correct matching for an orphan PDF cell by mapping its
bounding box on the geometry of the grid. This mapping
decides if the content of the orphan cell will be appended to
an already matched table cell, or a new table cell should be
created to match with the orphan.

9a. Compute the top and bottom boundary of the hori-
zontal band for each grid row (min/max y coordinates per
row).

9b. Intersect the orphan’s bounding box with the row
bands, and map the cell to the closest grid row.

9c. Compute the left and right boundary of the vertical
band for each grid column (min/max x coordinates per col-
umn).

9d. Intersect the orphan’s bounding box with the column
bands, and map the cell to the closest grid column.

9e. If the table cell under the identified row and column
is not empty, extend its content with the content of the or-

12

phan cell.
9f. Otherwise create a new structural cell and match it

wit the orphan cell.
Aditional images with examples of TableFormer predic-

tions and post-processing can be found below.

Figure 8: Example of a table with multi-line header.

Figure 9: Example of a table with big empty distance be-
tween cells.

Figure 10: Example of a complex table with empty cells.

13

Figure 11: Simple table with different style and empty
cells.

Figure 12: Simple table predictions and post processing.

Figure 13: Table predictions example on colorful table.

Figure 14: Example with multi-line text.

14

Figure 15: Example with triangular table.
Figure 16: Example of how post-processing helps to restore
mis-aligned bounding boxes prediction artifact.

15

Figure 17: Example of long table. End-to-end example from initial PDF cells to prediction of bounding boxes, post process-
ing and prediction of structure.

16

