The `VlmPipeline` in Docling allows to convert documents end-to-end using a vision-language model. Docling supports vision-language models which output: - DocTags (e.g. [SmolDocling](https://huggingface.co/ds4sd/SmolDocling-256M-preview)), the preferred choice - Markdown - HTML For running Docling using local models with the `VlmPipeline`: === "CLI" ```bash docling --pipeline vlm FILE ``` === "Python" See also the example [minimal_vlm_pipeline.py](./../examples/minimal_vlm_pipeline.py). ```python from docling.datamodel.base_models import InputFormat from docling.document_converter import DocumentConverter, PdfFormatOption from docling.pipeline.vlm_pipeline import VlmPipeline converter = DocumentConverter( format_options={ InputFormat.PDF: PdfFormatOption( pipeline_cls=VlmPipeline, ), } ) doc = converter.convert(source="FILE").document ``` ## Available local models By default, the vision-language models are running locally. Docling allows to choose between the Hugging Face [Transformers](https://github.com/huggingface/transformers) framweork and the [MLX](https://github.com/Blaizzy/mlx-vlm) (for Apple devices with MPS acceleration) one. The following table reports the models currently available out-of-the-box. | Model instance | Model | Framework | Device | Num pages | Inference time (sec) | | ---------------|------ | --------- | ------ | --------- | ---------------------| | `vlm_model_specs.SMOLDOCLING_TRANSFORMERS` | [ds4sd/SmolDocling-256M-preview](https://huggingface.co/ds4sd/SmolDocling-256M-preview) | `Transformers/AutoModelForVision2Seq` | MPS | 1 | 102.212 | | `vlm_model_specs.SMOLDOCLING_MLX` | [ds4sd/SmolDocling-256M-preview-mlx-bf16](https://huggingface.co/ds4sd/SmolDocling-256M-preview-mlx-bf16) | `MLX`| MPS | 1 | 6.15453 | | `vlm_model_specs.QWEN25_VL_3B_MLX` | [mlx-community/Qwen2.5-VL-3B-Instruct-bf16](https://huggingface.co/mlx-community/Qwen2.5-VL-3B-Instruct-bf16) | `MLX`| MPS | 1 | 23.4951 | | `vlm_model_specs.PIXTRAL_12B_MLX` | [mlx-community/pixtral-12b-bf16](https://huggingface.co/mlx-community/pixtral-12b-bf16) | `MLX` | MPS | 1 | 308.856 | | `vlm_model_specs.GEMMA3_12B_MLX` | [mlx-community/gemma-3-12b-it-bf16](https://huggingface.co/mlx-community/gemma-3-12b-it-bf16) | `MLX` | MPS | 1 | 378.486 | | `vlm_model_specs.GRANITE_VISION_TRANSFORMERS` | [ibm-granite/granite-vision-3.2-2b](https://huggingface.co/ibm-granite/granite-vision-3.2-2b) | `Transformers/AutoModelForVision2Seq` | MPS | 1 | 104.75 | | `vlm_model_specs.PHI4_TRANSFORMERS` | [microsoft/Phi-4-multimodal-instruct](https://huggingface.co/microsoft/Phi-4-multimodal-instruct) | `Transformers/AutoModelForCasualLM` | CPU | 1 | 1175.67 | | `vlm_model_specs.PIXTRAL_12B_TRANSFORMERS` | [mistral-community/pixtral-12b](https://huggingface.co/mistral-community/pixtral-12b) | `Transformers/AutoModelForVision2Seq` | CPU | 1 | 1828.21 | _Inference time is computed on a Macbook M3 Max using the example page `tests/data/pdf/2305.03393v1-pg9.pdf`. The comparision is done with the example [compare_vlm_models.py](./../examples/compare_vlm_models.py)._ For choosing the model, the code snippet above can be extended as follow ```python from docling.datamodel.base_models import InputFormat from docling.document_converter import DocumentConverter, PdfFormatOption from docling.pipeline.vlm_pipeline import VlmPipeline from docling.datamodel.pipeline_options import ( VlmPipelineOptions, ) from docling.datamodel import vlm_model_specs pipeline_options = VlmPipelineOptions( vlm_options=vlm_model_specs.SMOLDOCLING_MLX, # <-- change the model here ) converter = DocumentConverter( format_options={ InputFormat.PDF: PdfFormatOption( pipeline_cls=VlmPipeline, pipeline_options=pipeline_options, ), } ) doc = converter.convert(source="FILE").document ``` ### Other models Other models can be configured by directly providing the Hugging Face `repo_id`, the prompt and a few more options. For example: ```python from docling.datamodel.pipeline_options_vlm_model import InlineVlmOptions, InferenceFramework, TransformersModelType pipeline_options = VlmPipelineOptions( vlm_options=InlineVlmOptions( repo_id="ibm-granite/granite-vision-3.2-2b", prompt="Convert this page to markdown. Do not miss any text and only output the bare markdown!", response_format=ResponseFormat.MARKDOWN, inference_framework=InferenceFramework.TRANSFORMERS, transformers_model_type=TransformersModelType.AUTOMODEL_VISION2SEQ, supported_devices=[ AcceleratorDevice.CPU, AcceleratorDevice.CUDA, AcceleratorDevice.MPS, ], scale=2.0, temperature=0.0, ) ) ``` ## Remote models Additionally to local models, the `VlmPipeline` allows to offload the inference to a remote service hosting the models. Many remote inference services are provided, the key requirement is to offer an OpenAI-compatible API. This includes vLLM, Ollama, etc. More examples on how to connect with the remote inference services can be found in the following examples: - [vlm_pipeline_api_model.py](./../examples/vlm_pipeline_api_model.py)