docs: document Haystack & Vectara support (#628)

Signed-off-by: Panos Vagenas <35837085+vagenas@users.noreply.github.com>
This commit is contained in:
Panos Vagenas 2024-12-19 13:33:02 +01:00 committed by GitHub
parent 1418fa1488
commit fc645ea531
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 25 additions and 9 deletions

View File

@ -26,7 +26,7 @@
"metadata": {},
"source": [
"This example leverages the\n",
"[Haystack Docling extension](https://github.com/DS4SD/docling-haystack), along with\n",
"[Haystack Docling extension](../../integrations/haystack/), along with\n",
"Milvus-based document store and retriever instances, as well as sentence-transformers\n",
"embeddings.\n",
"\n",

View File

@ -0,0 +1,11 @@
Docling is available as a converter in [Haystack](https://haystack.deepset.ai/):
- 📖 [Docling Haystack integration docs](https://haystack.deepset.ai/integrations/docling)
- 💻 [Docling Haystack integration GitHub][github]
- 🧑🏽‍🍳 [Docling Haystack integration example][example]
- 📦 [Docling Haystack integration PyPI][pypi]
[github]: https://github.com/DS4SD/docling-haystack
[docs]: https://haystack.deepset.ai/integrations/docling
[pypi]: https://pypi.org/project/docling-haystack
[example]: https://ds4sd.github.io/docling/examples/rag_haystack/

View File

@ -1,10 +1,8 @@
Docling is powering document processing in [Red Hat Enterprise Linux AI][home] (RHEL AI),
Docling is powering document processing in [Red Hat Enterprise Linux AI (RHEL AI)](https://rhel.ai),
enabling users to unlock the knowledge hidden in documents and present it to
InstructLab's fine-tuning for aligning AI models to the user's specific data.
More details can be found in this [blog post][blog].
- 🏠 [RHEL AI home][home]
[home]: https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux/ai
[blog]: https://www.redhat.com/en/blog/docling-missing-document-processing-companion-generative-ai
- 📣 [RHEL AI 1.3 announcement](https://www.redhat.com/en/about/press-releases/red-hat-delivers-next-wave-gen-ai-innovation-new-red-hat-enterprise-linux-ai-capabilities)
- ✍️ RHEL blog posts:
- [RHEL AI 1.3 Docling context aware chunking: What you need to know](https://www.redhat.com/en/blog/rhel-13-docling-context-aware-chunking-what-you-need-know)
- [Docling: The missing document processing companion for generative AI](https://www.redhat.com/en/blog/docling-missing-document-processing-companion-generative-ai)

View File

@ -0,0 +1,5 @@
Docling is available as a document parser in [Vectara](https://www.vectara.com/).
- 💻 [Vectara GitHub org](https://github.com/vectara)
- [vectara-ingest GitHub repo](https://github.com/vectara/vectara-ingest)
- 📖 [Vectara docs](https://docs.vectara.com/)

View File

@ -89,13 +89,15 @@ nav:
- "Cloudera": integrations/cloudera.md
- "Data Prep Kit": integrations/data_prep_kit.md
- "DocETL": integrations/docetl.md
- "Haystack": integrations/haystack.md
- "🐶 InstructLab": integrations/instructlab.md
- "Kotaemon": integrations/kotaemon.md
- "🦙 LlamaIndex": integrations/llamaindex.md
- "Prodigy": integrations/prodigy.md
- "Red Hat Enterprise Linux AI": integrations/rhel_ai.md
- "RHEL AI": integrations/rhel_ai.md
- "spaCy": integrations/spacy.md
- "txtai": integrations/txtai.md
- "Vectara": integrations/vectara.md
# - "LangChain 🦜🔗": integrations/langchain.md
- Reference:
- Python API: