feat: add options for choosing OCR engines (#118)
--------- Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> Signed-off-by: Nikos Livathinos <nli@zurich.ibm.com> Signed-off-by: Peter Staar <taa@zurich.ibm.com> Co-authored-by: Nikos Livathinos <nli@zurich.ibm.com> Co-authored-by: Peter Staar <taa@zurich.ibm.com>
This commit is contained in:
167
docling/models/tesseract_ocr_cli_model.py
Normal file
167
docling/models/tesseract_ocr_cli_model.py
Normal file
@@ -0,0 +1,167 @@
|
||||
import io
|
||||
import logging
|
||||
import tempfile
|
||||
from subprocess import PIPE, Popen
|
||||
from typing import Iterable, Tuple
|
||||
|
||||
import pandas as pd
|
||||
|
||||
from docling.datamodel.base_models import BoundingBox, CoordOrigin, OcrCell, Page
|
||||
from docling.datamodel.pipeline_options import TesseractCliOcrOptions
|
||||
from docling.models.base_ocr_model import BaseOcrModel
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class TesseractOcrCliModel(BaseOcrModel):
|
||||
|
||||
def __init__(self, enabled: bool, options: TesseractCliOcrOptions):
|
||||
super().__init__(enabled=enabled, options=options)
|
||||
self.options: TesseractCliOcrOptions
|
||||
|
||||
self.scale = 3 # multiplier for 72 dpi == 216 dpi.
|
||||
|
||||
self._name = None
|
||||
self._version = None
|
||||
|
||||
if self.enabled:
|
||||
try:
|
||||
self._get_name_and_version()
|
||||
|
||||
except Exception as exc:
|
||||
raise RuntimeError(
|
||||
f"Tesseract is not available, aborting: {exc} "
|
||||
"Install tesseract on your system and the tesseract binary is discoverable. "
|
||||
"The actual command for Tesseract can be specified in `pipeline_options.ocr_options.tesseract_cmd='tesseract'`. "
|
||||
"Alternatively, Docling has support for other OCR engines. See the documentation."
|
||||
)
|
||||
|
||||
def _get_name_and_version(self) -> Tuple[str, str]:
|
||||
|
||||
if self._name != None and self._version != None:
|
||||
return self._name, self._version
|
||||
|
||||
cmd = [self.options.tesseract_cmd, "--version"]
|
||||
|
||||
proc = Popen(cmd, stdout=PIPE, stderr=PIPE)
|
||||
stdout, stderr = proc.communicate()
|
||||
|
||||
proc.wait()
|
||||
|
||||
# HACK: Windows versions of Tesseract output the version to stdout, Linux versions
|
||||
# to stderr, so check both.
|
||||
version_line = (
|
||||
(stdout.decode("utf8").strip() or stderr.decode("utf8").strip())
|
||||
.split("\n")[0]
|
||||
.strip()
|
||||
)
|
||||
|
||||
# If everything else fails...
|
||||
if not version_line:
|
||||
version_line = "tesseract XXX"
|
||||
|
||||
name, version = version_line.split(" ")
|
||||
|
||||
self._name = name
|
||||
self._version = version
|
||||
|
||||
return name, version
|
||||
|
||||
def _run_tesseract(self, ifilename: str):
|
||||
|
||||
cmd = [self.options.tesseract_cmd]
|
||||
|
||||
if self.options.lang is not None and len(self.options.lang) > 0:
|
||||
cmd.append("-l")
|
||||
cmd.append("+".join(self.options.lang))
|
||||
if self.options.path is not None:
|
||||
cmd.append("--tessdata-dir")
|
||||
cmd.append(self.options.path)
|
||||
|
||||
cmd += [ifilename, "stdout", "tsv"]
|
||||
_log.info("command: {}".format(" ".join(cmd)))
|
||||
|
||||
proc = Popen(cmd, stdout=PIPE)
|
||||
output, _ = proc.communicate()
|
||||
|
||||
# _log.info(output)
|
||||
|
||||
# Decode the byte string to a regular string
|
||||
decoded_data = output.decode("utf-8")
|
||||
# _log.info(decoded_data)
|
||||
|
||||
# Read the TSV file generated by Tesseract
|
||||
df = pd.read_csv(io.StringIO(decoded_data), sep="\t")
|
||||
|
||||
# Display the dataframe (optional)
|
||||
# _log.info("df: ", df.head())
|
||||
|
||||
# Filter rows that contain actual text (ignore header or empty rows)
|
||||
df_filtered = df[df["text"].notnull() & (df["text"].str.strip() != "")]
|
||||
|
||||
return df_filtered
|
||||
|
||||
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]:
|
||||
|
||||
if not self.enabled:
|
||||
yield from page_batch
|
||||
return
|
||||
|
||||
for page in page_batch:
|
||||
ocr_rects = self.get_ocr_rects(page)
|
||||
|
||||
all_ocr_cells = []
|
||||
for ocr_rect in ocr_rects:
|
||||
# Skip zero area boxes
|
||||
if ocr_rect.area() == 0:
|
||||
continue
|
||||
high_res_image = page._backend.get_page_image(
|
||||
scale=self.scale, cropbox=ocr_rect
|
||||
)
|
||||
|
||||
with tempfile.NamedTemporaryFile(suffix=".png", mode="w") as image_file:
|
||||
fname = image_file.name
|
||||
high_res_image.save(fname)
|
||||
|
||||
df = self._run_tesseract(fname)
|
||||
|
||||
# _log.info(df)
|
||||
|
||||
# Print relevant columns (bounding box and text)
|
||||
for ix, row in df.iterrows():
|
||||
text = row["text"]
|
||||
conf = row["conf"]
|
||||
|
||||
l = float(row["left"])
|
||||
b = float(row["top"])
|
||||
w = float(row["width"])
|
||||
h = float(row["height"])
|
||||
|
||||
t = b + h
|
||||
r = l + w
|
||||
|
||||
cell = OcrCell(
|
||||
id=ix,
|
||||
text=text,
|
||||
confidence=conf / 100.0,
|
||||
bbox=BoundingBox.from_tuple(
|
||||
coord=(
|
||||
(l / self.scale) + ocr_rect.l,
|
||||
(b / self.scale) + ocr_rect.t,
|
||||
(r / self.scale) + ocr_rect.l,
|
||||
(t / self.scale) + ocr_rect.t,
|
||||
),
|
||||
origin=CoordOrigin.TOPLEFT,
|
||||
),
|
||||
)
|
||||
all_ocr_cells.append(cell)
|
||||
|
||||
## Remove OCR cells which overlap with programmatic cells.
|
||||
filtered_ocr_cells = self.filter_ocr_cells(all_ocr_cells, page.cells)
|
||||
|
||||
page.cells.extend(filtered_ocr_cells)
|
||||
|
||||
# DEBUG code:
|
||||
# self.draw_ocr_rects_and_cells(page, ocr_rects)
|
||||
|
||||
yield page
|
||||
Reference in New Issue
Block a user