feat: Add adaptive OCR, factor out treatment of OCR areas and cell filtering (#38)

* Introduce adaptive OCR

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Factor out BaseOcrModel, add docling-parse backend tests, fixes

* Make easyocr default dep

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

---------

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>
This commit is contained in:
Christoph Auer
2024-08-20 15:28:03 +02:00
committed by GitHub
parent 47b8ad917e
commit e94d317c02
13 changed files with 285 additions and 83 deletions

View File

@@ -1,20 +1,18 @@
import copy
import logging
import random
from typing import Iterable
import numpy
from PIL import ImageDraw
from docling.datamodel.base_models import BoundingBox, CoordOrigin, OcrCell, Page
from docling.models.base_ocr_model import BaseOcrModel
_log = logging.getLogger(__name__)
class EasyOcrModel:
class EasyOcrModel(BaseOcrModel):
def __init__(self, config):
self.config = config
self.enabled = config["enabled"]
super().__init__(config)
self.scale = 3 # multiplier for 72 dpi == 216 dpi.
if self.enabled:
@@ -29,49 +27,44 @@ class EasyOcrModel:
return
for page in page_batch:
# rects = page._fpage.
high_res_image = page.get_image(scale=self.scale)
im = numpy.array(high_res_image)
result = self.reader.readtext(im)
ocr_rects = self.get_ocr_rects(page)
del high_res_image
del im
cells = [
OcrCell(
id=ix,
text=line[1],
confidence=line[2],
bbox=BoundingBox.from_tuple(
coord=(
line[0][0][0] / self.scale,
line[0][0][1] / self.scale,
line[0][2][0] / self.scale,
line[0][2][1] / self.scale,
),
origin=CoordOrigin.TOPLEFT,
),
all_ocr_cells = []
for ocr_rect in ocr_rects:
high_res_image = page._backend.get_page_image(
scale=self.scale, cropbox=ocr_rect
)
for ix, line in enumerate(result)
]
im = numpy.array(high_res_image)
result = self.reader.readtext(im)
page.cells = cells # For now, just overwrites all digital cells.
del high_res_image
del im
cells = [
OcrCell(
id=ix,
text=line[1],
confidence=line[2],
bbox=BoundingBox.from_tuple(
coord=(
(line[0][0][0] / self.scale) + ocr_rect.l,
(line[0][0][1] / self.scale) + ocr_rect.t,
(line[0][2][0] / self.scale) + ocr_rect.l,
(line[0][2][1] / self.scale) + ocr_rect.t,
),
origin=CoordOrigin.TOPLEFT,
),
)
for ix, line in enumerate(result)
]
all_ocr_cells.extend(cells)
## Remove OCR cells which overlap with programmatic cells.
filtered_ocr_cells = self.filter_ocr_cells(all_ocr_cells, page.cells)
page.cells.extend(filtered_ocr_cells)
# DEBUG code:
def draw_clusters_and_cells():
image = copy.deepcopy(page.image)
draw = ImageDraw.Draw(image)
cell_color = (
random.randint(30, 140),
random.randint(30, 140),
random.randint(30, 140),
)
for tc in cells:
x0, y0, x1, y1 = tc.bbox.as_tuple()
draw.rectangle([(x0, y0), (x1, y1)], outline=cell_color)
image.show()
# draw_clusters_and_cells()
# self.draw_ocr_rects_and_cells(page, ocr_rects)
yield page