Initial commit
This commit is contained in:
318
docling/models/layout_model.py
Normal file
318
docling/models/layout_model.py
Normal file
@@ -0,0 +1,318 @@
|
||||
import copy
|
||||
import logging
|
||||
import random
|
||||
import time
|
||||
from typing import Iterable, List
|
||||
|
||||
from docling_ibm_models.layoutmodel.layout_predictor import LayoutPredictor
|
||||
from PIL import ImageDraw
|
||||
|
||||
from docling.datamodel.base_models import (
|
||||
BoundingBox,
|
||||
Cell,
|
||||
Cluster,
|
||||
CoordOrigin,
|
||||
LayoutPrediction,
|
||||
Page,
|
||||
)
|
||||
from docling.utils import layout_utils as lu
|
||||
|
||||
_log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class LayoutModel:
|
||||
|
||||
TEXT_ELEM_LABELS = [
|
||||
"Text",
|
||||
"Footnote",
|
||||
"Caption",
|
||||
"Checkbox-Unselected",
|
||||
"Checkbox-Selected",
|
||||
"Section-header",
|
||||
"Page-header",
|
||||
"Page-footer",
|
||||
"Code",
|
||||
"List-item",
|
||||
# "Formula",
|
||||
]
|
||||
PAGE_HEADER_LABELS = ["Page-header", "Page-footer"]
|
||||
|
||||
TABLE_LABEL = "Table"
|
||||
FIGURE_LABEL = "Picture"
|
||||
FORMULA_LABEL = "Formula"
|
||||
|
||||
def __init__(self, config):
|
||||
self.config = config
|
||||
self.layout_predictor = LayoutPredictor(
|
||||
config["artifacts_path"]
|
||||
) # TODO temporary
|
||||
|
||||
def postprocess(self, clusters: List[Cluster], cells: List[Cell], page_height):
|
||||
MIN_INTERSECTION = 0.2
|
||||
CLASS_THRESHOLDS = {
|
||||
"Caption": 0.35,
|
||||
"Footnote": 0.35,
|
||||
"Formula": 0.35,
|
||||
"List-item": 0.35,
|
||||
"Page-footer": 0.35,
|
||||
"Page-header": 0.35,
|
||||
"Picture": 0.2, # low threshold adjust to capture chemical structures for examples.
|
||||
"Section-header": 0.45,
|
||||
"Table": 0.35,
|
||||
"Text": 0.45,
|
||||
"Title": 0.45,
|
||||
"Document Index": 0.45,
|
||||
"Code": 0.45,
|
||||
"Checkbox-Selected": 0.45,
|
||||
"Checkbox-Unselected": 0.45,
|
||||
"Form": 0.45,
|
||||
"Key-Value Region": 0.45,
|
||||
}
|
||||
|
||||
_log.debug("================= Start postprocess function ====================")
|
||||
start_time = time.time()
|
||||
# Apply Confidence Threshold to cluster predictions
|
||||
# confidence = self.conf_threshold
|
||||
clusters_out = []
|
||||
|
||||
for cluster in clusters:
|
||||
confidence = CLASS_THRESHOLDS[cluster.label]
|
||||
if cluster.confidence >= confidence:
|
||||
# annotation["created_by"] = "high_conf_pred"
|
||||
clusters_out.append(cluster)
|
||||
|
||||
# map to dictionary clusters and cells, with bottom left origin
|
||||
clusters = [
|
||||
{
|
||||
"id": c.id,
|
||||
"bbox": list(
|
||||
c.bbox.to_bottom_left_origin(page_height).as_tuple()
|
||||
), # TODO
|
||||
"confidence": c.confidence,
|
||||
"cell_ids": [],
|
||||
"type": c.label,
|
||||
}
|
||||
for c in clusters
|
||||
]
|
||||
|
||||
clusters_out = [
|
||||
{
|
||||
"id": c.id,
|
||||
"bbox": list(
|
||||
c.bbox.to_bottom_left_origin(page_height).as_tuple()
|
||||
), # TODO
|
||||
"confidence": c.confidence,
|
||||
"created_by": "high_conf_pred",
|
||||
"cell_ids": [],
|
||||
"type": c.label,
|
||||
}
|
||||
for c in clusters_out
|
||||
]
|
||||
|
||||
raw_cells = [
|
||||
{
|
||||
"id": c.id,
|
||||
"bbox": list(
|
||||
c.bbox.to_bottom_left_origin(page_height).as_tuple()
|
||||
), # TODO
|
||||
"text": c.text,
|
||||
}
|
||||
for c in cells
|
||||
]
|
||||
cell_count = len(raw_cells)
|
||||
|
||||
_log.debug("---- 0. Treat cluster overlaps ------")
|
||||
clusters_out = lu.remove_cluster_duplicates_by_conf(clusters_out, 0.8)
|
||||
|
||||
_log.debug(
|
||||
"---- 1. Initially assign cells to clusters based on minimum intersection ------"
|
||||
)
|
||||
## Check for cells included in or touched by clusters:
|
||||
clusters_out = lu.assigning_cell_ids_to_clusters(
|
||||
clusters_out, raw_cells, MIN_INTERSECTION
|
||||
)
|
||||
|
||||
_log.debug("---- 2. Assign Orphans with Low Confidence Detections")
|
||||
# Creates a map of cell_id->cluster_id
|
||||
(
|
||||
clusters_around_cells,
|
||||
orphan_cell_indices,
|
||||
ambiguous_cell_indices,
|
||||
) = lu.cell_id_state_map(clusters_out, cell_count)
|
||||
|
||||
# Assign orphan cells with lower confidence predictions
|
||||
clusters_out, orphan_cell_indices = lu.assign_orphans_with_low_conf_pred(
|
||||
clusters_out, clusters, raw_cells, orphan_cell_indices
|
||||
)
|
||||
|
||||
# Refresh the cell_ids assignment, after creating new clusters using low conf predictions
|
||||
clusters_out = lu.assigning_cell_ids_to_clusters(
|
||||
clusters_out, raw_cells, MIN_INTERSECTION
|
||||
)
|
||||
|
||||
_log.debug("---- 3. Settle Ambigous Cells")
|
||||
# Creates an update map after assignment of cell_id->cluster_id
|
||||
(
|
||||
clusters_around_cells,
|
||||
orphan_cell_indices,
|
||||
ambiguous_cell_indices,
|
||||
) = lu.cell_id_state_map(clusters_out, cell_count)
|
||||
|
||||
# Settle pdf cells that belong to multiple clusters
|
||||
clusters_out, ambiguous_cell_indices = lu.remove_ambigous_pdf_cell_by_conf(
|
||||
clusters_out, raw_cells, ambiguous_cell_indices
|
||||
)
|
||||
|
||||
_log.debug("---- 4. Set Orphans as Text")
|
||||
(
|
||||
clusters_around_cells,
|
||||
orphan_cell_indices,
|
||||
ambiguous_cell_indices,
|
||||
) = lu.cell_id_state_map(clusters_out, cell_count)
|
||||
|
||||
clusters_out, orphan_cell_indices = lu.set_orphan_as_text(
|
||||
clusters_out, clusters, raw_cells, orphan_cell_indices
|
||||
)
|
||||
|
||||
_log.debug("---- 5. Merge Cells & and adapt the bounding boxes")
|
||||
# Merge cells orphan cells
|
||||
clusters_out = lu.merge_cells(clusters_out)
|
||||
|
||||
# Clean up clusters that remain from merged and unreasonable clusters
|
||||
clusters_out = lu.clean_up_clusters(
|
||||
clusters_out,
|
||||
raw_cells,
|
||||
merge_cells=True,
|
||||
img_table=True,
|
||||
one_cell_table=True,
|
||||
)
|
||||
|
||||
new_clusters = lu.adapt_bboxes(raw_cells, clusters_out, orphan_cell_indices)
|
||||
clusters_out = new_clusters
|
||||
|
||||
## We first rebuild where every cell is now:
|
||||
## Now we write into a prediction cells list, not into the raw cells list.
|
||||
## As we don't need previous labels, we best overwrite any old list, because that might
|
||||
## have been sorted differently.
|
||||
(
|
||||
clusters_around_cells,
|
||||
orphan_cell_indices,
|
||||
ambiguous_cell_indices,
|
||||
) = lu.cell_id_state_map(clusters_out, cell_count)
|
||||
|
||||
target_cells = []
|
||||
for ix, cell in enumerate(raw_cells):
|
||||
new_cell = {
|
||||
"id": ix,
|
||||
"rawcell_id": ix,
|
||||
"label": "None",
|
||||
"bbox": cell["bbox"],
|
||||
"text": cell["text"],
|
||||
}
|
||||
for cluster_index in clusters_around_cells[
|
||||
ix
|
||||
]: # By previous analysis, this is always 1 cluster.
|
||||
new_cell["label"] = clusters_out[cluster_index]["type"]
|
||||
target_cells.append(new_cell)
|
||||
# _log.debug("New label of cell " + str(ix) + " is " + str(new_cell["label"]))
|
||||
cells_out = target_cells
|
||||
|
||||
## -------------------------------
|
||||
## Sort clusters into reasonable reading order, and sort the cells inside each cluster
|
||||
_log.debug("---- 5. Sort clusters in reading order ------")
|
||||
sorted_clusters = lu.produce_reading_order(
|
||||
clusters_out, "raw_cell_ids", "raw_cell_ids", True
|
||||
)
|
||||
clusters_out = sorted_clusters
|
||||
|
||||
# end_time = timer()
|
||||
_log.debug("---- End of postprocessing function ------")
|
||||
end_time = time.time() - start_time
|
||||
_log.debug(f"Finished post processing in seconds={end_time:.3f}")
|
||||
|
||||
cells_out = [
|
||||
Cell(
|
||||
id=c["id"],
|
||||
bbox=BoundingBox.from_tuple(
|
||||
coord=c["bbox"], origin=CoordOrigin.BOTTOMLEFT
|
||||
).to_top_left_origin(page_height),
|
||||
text=c["text"],
|
||||
)
|
||||
for c in cells_out
|
||||
]
|
||||
clusters_out_new = []
|
||||
for c in clusters_out:
|
||||
cluster_cells = [ccell for ccell in cells_out if ccell.id in c["cell_ids"]]
|
||||
c_new = Cluster(
|
||||
id=c["id"],
|
||||
bbox=BoundingBox.from_tuple(
|
||||
coord=c["bbox"], origin=CoordOrigin.BOTTOMLEFT
|
||||
).to_top_left_origin(page_height),
|
||||
confidence=c["confidence"],
|
||||
label=c["type"],
|
||||
cells=cluster_cells,
|
||||
)
|
||||
clusters_out_new.append(c_new)
|
||||
|
||||
return clusters_out_new, cells_out
|
||||
|
||||
def __call__(self, page_batch: Iterable[Page]) -> Iterable[Page]:
|
||||
for page in page_batch:
|
||||
clusters = []
|
||||
for ix, pred_item in enumerate(self.layout_predictor.predict(page.image)):
|
||||
cluster = Cluster(
|
||||
id=ix,
|
||||
label=pred_item["label"],
|
||||
confidence=pred_item["confidence"],
|
||||
bbox=BoundingBox.model_validate(pred_item),
|
||||
cells=[],
|
||||
)
|
||||
clusters.append(cluster)
|
||||
|
||||
# Map cells to clusters
|
||||
# TODO: Remove, postprocess should take care of it anyway.
|
||||
for cell in page.cells:
|
||||
for cluster in clusters:
|
||||
if not cell.bbox.area() > 0:
|
||||
overlap_frac = 0.0
|
||||
else:
|
||||
overlap_frac = (
|
||||
cell.bbox.intersection_area_with(cluster.bbox)
|
||||
/ cell.bbox.area()
|
||||
)
|
||||
|
||||
if overlap_frac > 0.5:
|
||||
cluster.cells.append(cell)
|
||||
|
||||
# Pre-sort clusters
|
||||
# clusters = self.sort_clusters_by_cell_order(clusters)
|
||||
|
||||
# DEBUG code:
|
||||
def draw_clusters_and_cells():
|
||||
image = copy.deepcopy(page.image)
|
||||
draw = ImageDraw.Draw(image)
|
||||
for c in clusters:
|
||||
x0, y0, x1, y1 = c.bbox.as_tuple()
|
||||
draw.rectangle([(x0, y0), (x1, y1)], outline="green")
|
||||
|
||||
cell_color = (
|
||||
random.randint(30, 140),
|
||||
random.randint(30, 140),
|
||||
random.randint(30, 140),
|
||||
)
|
||||
for tc in c.cells: # [:1]:
|
||||
x0, y0, x1, y1 = tc.bbox.as_tuple()
|
||||
draw.rectangle([(x0, y0), (x1, y1)], outline=cell_color)
|
||||
image.show()
|
||||
|
||||
# draw_clusters_and_cells()
|
||||
|
||||
clusters, page.cells = self.postprocess(
|
||||
clusters, page.cells, page.size.height
|
||||
)
|
||||
|
||||
# draw_clusters_and_cells()
|
||||
|
||||
page.predictions.layout = LayoutPrediction(clusters=clusters)
|
||||
|
||||
yield page
|
||||
Reference in New Issue
Block a user