feat: add simplified single-doc conversion (#20)

Signed-off-by: Panos Vagenas <35837085+vagenas@users.noreply.github.com>
This commit is contained in:
Panos Vagenas 2024-07-26 16:55:33 +02:00 committed by GitHub
parent 3eca8b8485
commit d603137383
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 80 additions and 6 deletions

View File

@ -30,19 +30,35 @@ To use Docling, simply install `docling` from your package manager, e.g. pip:
pip install docling
```
> [!NOTE]
> [!NOTE]
> Works on macOS and Linux environments. Windows platforms are currently not tested.
### Development setup
To develop for Docling, you need Python 3.10 / 3.11 / 3.12 and Poetry. You can then install from your local clone's root dir:
```bash
poetry install
poetry install --all-extras
```
## Usage
For basic usage, see the [convert.py](https://github.com/DS4SD/docling/blob/main/examples/convert.py) example module. Run with:
### Convert a single document
To convert invidual PDF documents, use `convert_single()`, for example:
```python
from docling.document_converter import DocumentConverter
source = "https://arxiv.org/pdf/2206.01062" # PDF path or URL
converter = DocumentConverter()
doc = converter.convert_single(source)
print(doc.export_to_markdown()) # output: "## DocLayNet: A Large Human-Annotated Dataset for Document-Layout Analysis [...]"
```
### Convert a batch of documents
For an example of converting multiple documents, see [convert.py](https://github.com/DS4SD/docling/blob/main/examples/convert.py).
From a local repo clone, you can run it with:
```
python examples/convert.py
@ -58,7 +74,7 @@ You can control if table structure recognition or OCR should be performed by arg
doc_converter = DocumentConverter(
artifacts_path=artifacts_path,
pipeline_options=PipelineOptions(
do_table_structure=False, # controls if table structure is recovered
do_table_structure=False, # controls if table structure is recovered
do_ocr=True, # controls if OCR is applied (ignores programmatic content)
),
)
@ -90,7 +106,7 @@ conv_input = DocumentConversionInput.from_paths(
)
```
### Convert from binary PDF streams
### Convert from binary PDF streams
You can convert PDFs from a binary stream instead of from the filesystem as follows:
```python

View File

@ -1,11 +1,15 @@
import functools
import logging
import tempfile
import time
import traceback
from pathlib import Path
from typing import Iterable, Optional, Type, Union
import requests
from docling_core.types import Document
from PIL import ImageDraw
from pydantic import AnyHttpUrl, TypeAdapter, ValidationError
from docling.backend.abstract_backend import PdfDocumentBackend
from docling.datamodel.base_models import (
@ -32,6 +36,7 @@ _log = logging.getLogger(__name__)
class DocumentConverter:
_layout_model_path = "model_artifacts/layout/beehive_v0.0.5"
_table_model_path = "model_artifacts/tableformer"
_default_download_filename = "file.pdf"
def __init__(
self,
@ -80,6 +85,57 @@ class DocumentConverter:
# Note: Pdfium backend is not thread-safe, thread pool usage was disabled.
yield from map(self.process_document, input_batch)
def convert_single(self, source: Path | AnyHttpUrl | str) -> Document:
"""Convert a single document.
Args:
source (Path | AnyHttpUrl | str): The PDF input source. Can be a path or URL.
Raises:
ValueError: If source is of unexpected type.
RuntimeError: If conversion fails.
Returns:
Document: The converted document object.
"""
with tempfile.TemporaryDirectory() as temp_dir:
try:
http_url: AnyHttpUrl = TypeAdapter(AnyHttpUrl).validate_python(source)
res = requests.get(http_url, stream=True)
res.raise_for_status()
fname = None
# try to get filename from response header
if cont_disp := res.headers.get("Content-Disposition"):
for par in cont_disp.strip().split(";"):
# currently only handling directive "filename" (not "*filename")
if (split := par.split("=")) and split[0].strip() == "filename":
fname = "=".join(split[1:]).strip().strip("'\"") or None
break
# otherwise, use name from URL:
if fname is None:
fname = Path(http_url.path).name or self._default_download_filename
local_path = Path(temp_dir) / fname
with open(local_path, "wb") as f:
for chunk in res.iter_content(chunk_size=1024): # using 1-KB chunks
f.write(chunk)
except ValidationError:
try:
local_path = TypeAdapter(Path).validate_python(source)
except ValidationError:
raise ValueError(
f"Unexpected file path type encountered: {type(source)}"
)
conv_inp = DocumentConversionInput.from_paths(paths=[local_path])
converted_docs_iter = self.convert(conv_inp)
converted_doc: ConvertedDocument = next(converted_docs_iter)
if converted_doc.status not in {
ConversionStatus.SUCCESS,
ConversionStatus.SUCCESS_WITH_ERRORS,
}:
raise RuntimeError(f"Conversion failed with status: {converted_doc.status}")
doc = converted_doc.to_ds_document()
return doc
def process_document(self, in_doc: InputDocument) -> ConvertedDocument:
start_doc_time = time.time()
converted_doc = ConvertedDocument(input=in_doc)

3
poetry.lock generated
View File

@ -2510,6 +2510,7 @@ description = "Nvidia JIT LTO Library"
optional = false
python-versions = ">=3"
files = [
{file = "nvidia_nvjitlink_cu12-12.5.82-py3-none-manylinux2014_aarch64.whl", hash = "sha256:98103729cc5226e13ca319a10bbf9433bbbd44ef64fe72f45f067cacc14b8d27"},
{file = "nvidia_nvjitlink_cu12-12.5.82-py3-none-manylinux2014_x86_64.whl", hash = "sha256:f9b37bc5c8cf7509665cb6ada5aaa0ce65618f2332b7d3e78e9790511f111212"},
{file = "nvidia_nvjitlink_cu12-12.5.82-py3-none-win_amd64.whl", hash = "sha256:e782564d705ff0bf61ac3e1bf730166da66dd2fe9012f111ede5fc49b64ae697"},
]
@ -4881,4 +4882,4 @@ ocr = ["easyocr"]
[metadata]
lock-version = "2.0"
python-versions = "^3.10"
content-hash = "3ffc5161fd49fe2186ee2afbb3319922964661c769c434fc7386aae40f4aab19"
content-hash = "dcb00c6601f61b087fd204d040149c20a7dcd72ab353e912e78dc265c86e4d00"

View File

@ -30,6 +30,7 @@ filetype = "^1.2.0"
pypdfium2 = "^4.30.0"
pydantic-settings = "^2.3.0"
huggingface_hub = ">=0.23,<1"
requests = "^2.32.3"
easyocr = { version = "^1.7", optional = true }
[tool.poetry.group.dev.dependencies]