feat: OllamaVlmModel for Granite Vision 3.2 (#1337)

* build: Add ollama sdk dependency

Branch: OllamaVlmModel

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add option plumbing for OllamaVlmOptions in pipeline_options

Branch: OllamaVlmModel

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Full implementation of OllamaVlmModel

Branch: OllamaVlmModel

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Connect "granite_vision_ollama" pipeline option to CLI

Branch: OllamaVlmModel

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* Revert "build: Add ollama sdk dependency"

After consideration, we're going to use the generic OpenAI API instead
of the Ollama-specific API to avoid duplicate work.

This reverts commit bc6b366468cdd66b52540aac9c7d8b584ab48ad0.

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Move OpenAI API call logic into utils.utils

This will allow reuse of this logic in a generic VLM model

NOTE: There is a subtle change here in the ordering of the text prompt and
the image in the call to the OpenAI API. When run against Ollama, this
ordering makes a big difference. If the prompt comes before the image, the
result is terse and not usable whereas the prompt coming after the image
works as expected and matches the non-OpenAI chat API.

Branch: OllamaVlmModel

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Refactor from Ollama SDK to generic OpenAI API

Branch: OllamaVlmModel

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Linting, formatting, and bug fixes

The one bug fix was in the timeout arg to openai_image_request. Otherwise,
this is all style changes to get MyPy and black passing cleanly.

Branch: OllamaVlmModel

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* remove model from download enum

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* generalize input args for other API providers

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* rename and refactor

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* add example

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* require flag for remote services

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* disable example from CI

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* add examples to docs

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
Co-authored-by: Michele Dolfi <dol@zurich.ibm.com>
This commit is contained in:
Gabe Goodhart
2025-04-10 10:03:04 -06:00
committed by GitHub
parent 6b696b504a
commit c605edd8e9
10 changed files with 344 additions and 95 deletions

View File

@@ -15,11 +15,14 @@ from docling.backend.pdf_backend import PdfDocumentBackend
from docling.datamodel.base_models import InputFormat, Page
from docling.datamodel.document import ConversionResult, InputDocument
from docling.datamodel.pipeline_options import (
ApiVlmOptions,
HuggingFaceVlmOptions,
InferenceFramework,
ResponseFormat,
VlmPipelineOptions,
)
from docling.datamodel.settings import settings
from docling.models.api_vlm_model import ApiVlmModel
from docling.models.hf_mlx_model import HuggingFaceMlxModel
from docling.models.hf_vlm_model import HuggingFaceVlmModel
from docling.pipeline.base_pipeline import PaginatedPipeline
@@ -57,27 +60,34 @@ class VlmPipeline(PaginatedPipeline):
self.keep_images = self.pipeline_options.generate_page_images
if (
self.pipeline_options.vlm_options.inference_framework
== InferenceFramework.MLX
):
if isinstance(pipeline_options.vlm_options, ApiVlmOptions):
self.build_pipe = [
HuggingFaceMlxModel(
ApiVlmModel(
enabled=True, # must be always enabled for this pipeline to make sense.
artifacts_path=artifacts_path,
accelerator_options=pipeline_options.accelerator_options,
vlm_options=self.pipeline_options.vlm_options,
),
]
else:
self.build_pipe = [
HuggingFaceVlmModel(
enabled=True, # must be always enabled for this pipeline to make sense.
artifacts_path=artifacts_path,
accelerator_options=pipeline_options.accelerator_options,
vlm_options=self.pipeline_options.vlm_options,
enable_remote_services=self.pipeline_options.enable_remote_services,
vlm_options=cast(ApiVlmOptions, self.pipeline_options.vlm_options),
),
]
elif isinstance(self.pipeline_options.vlm_options, HuggingFaceVlmOptions):
vlm_options = cast(HuggingFaceVlmOptions, self.pipeline_options.vlm_options)
if vlm_options.inference_framework == InferenceFramework.MLX:
self.build_pipe = [
HuggingFaceMlxModel(
enabled=True, # must be always enabled for this pipeline to make sense.
artifacts_path=artifacts_path,
accelerator_options=pipeline_options.accelerator_options,
vlm_options=vlm_options,
),
]
else:
self.build_pipe = [
HuggingFaceVlmModel(
enabled=True, # must be always enabled for this pipeline to make sense.
artifacts_path=artifacts_path,
accelerator_options=pipeline_options.accelerator_options,
vlm_options=vlm_options,
),
]
self.enrichment_pipe = [
# Other models working on `NodeItem` elements in the DoclingDocument