diff --git a/docs/examples/rag_milvus.ipynb b/docs/examples/rag_milvus.ipynb
new file mode 100644
index 0000000..6366810
--- /dev/null
+++ b/docs/examples/rag_milvus.ipynb
@@ -0,0 +1,551 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "
"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# RAG with Milvus\n",
+ "\n",
+ "| Step | Tech | Execution |\n",
+ "| --- | --- | --- |\n",
+ "| Embedding | OpenAI (text-embedding-3-small) | π Remote |\n",
+ "| Vector store | Milvus | π» Local |\n",
+ "| Gen AI | OpenAI (gpt-4o) | π Remote |\n",
+ "\n",
+ "\n",
+ "## A recipe π§βπ³ π₯ π\n",
+ "\n",
+ "This is a code recipe that uses [Milvus](https://milvus.io/), the world's most advanced open-source vector database, to perform RAG over documents parsed by [Docling](https://docling-project.github.io/docling/).\n",
+ "\n",
+ "In this notebook, we accomplish the following:\n",
+ "* Parse documents using Docling's document conversion capabilities\n",
+ "* Perform hierarchical chunking of the documents using Docling\n",
+ "* Generate text embeddings with OpenAI\n",
+ "* Perform RAG using Milvus, the world's most advanced open-source vector database\n",
+ "\n",
+ "Note: For best results, please use **GPU acceleration** to run this notebook. Here are two options for running this notebook:\n",
+ "1. **Locally on a MacBook with an Apple Silicon chip.** Converting all documents in the notebook takes ~2 minutes on a MacBook M2 due to Docling's usage of MPS accelerators.\n",
+ "2. **Run this notebook on Google Colab.** Converting all documents in the notebook takes ~8 mintutes on a Google Colab T4 GPU.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Preparation\n",
+ "\n",
+ "### Dependencies and Environment\n",
+ "\n",
+ "To start, install the required dependencies by running the following command:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "! pip install --upgrade pymilvus docling openai torch"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "> If you are using Google Colab, to enable dependencies just installed, you may need to **restart the runtime** (click on the \"Runtime\" menu at the top of the screen, and select \"Restart session\" from the dropdown menu)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### GPU Checking"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Part of what makes Docling so remarkable is the fact that it can run on commodity hardware. This means that this notebook can be run on a local machine with GPU acceleration. If you're using a MacBook with a silicon chip, Docling integrates seamlessly with Metal Performance Shaders (MPS). MPS provides out-of-the-box GPU acceleration for macOS, seamlessly integrating with PyTorch and TensorFlow, offering energy-efficient performance on Apple Silicon, and broad compatibility with all Metal-supported GPUs.\n",
+ "\n",
+ "The code below checks to see if a GPU is available, either via CUDA or MPS."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "MPS GPU is enabled.\n"
+ ]
+ }
+ ],
+ "source": [
+ "import torch\n",
+ "\n",
+ "# Check if GPU or MPS is available\n",
+ "if torch.cuda.is_available():\n",
+ " device = torch.device(\"cuda\")\n",
+ " print(f\"CUDA GPU is enabled: {torch.cuda.get_device_name(0)}\")\n",
+ "elif torch.backends.mps.is_available():\n",
+ " device = torch.device(\"mps\")\n",
+ " print(\"MPS GPU is enabled.\")\n",
+ "else:\n",
+ " raise OSError(\n",
+ " \"No GPU or MPS device found. Please check your environment and ensure GPU or MPS support is configured.\"\n",
+ " )"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Setting Up API Keys\n",
+ "\n",
+ "We will use OpenAI as the LLM in this example. You should prepare the [OPENAI_API_KEY](https://platform.openai.com/docs/quickstart) as an environment variable."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "\n",
+ "os.environ[\"OPENAI_API_KEY\"] = \"sk-***********\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Prepare the LLM and Embedding Model\n",
+ "\n",
+ "We initialize the OpenAI client to prepare the embedding model.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from openai import OpenAI\n",
+ "\n",
+ "openai_client = OpenAI()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Define a function to generate text embeddings using OpenAI client. We use the [text-embedding-3-small](https://platform.openai.com/docs/guides/embeddings) model as an example."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def emb_text(text):\n",
+ " return (\n",
+ " openai_client.embeddings.create(input=text, model=\"text-embedding-3-small\")\n",
+ " .data[0]\n",
+ " .embedding\n",
+ " )"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Generate a test embedding and print its dimension and first few elements."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "1536\n",
+ "[0.009889289736747742, -0.005578675772994757, 0.00683477520942688, -0.03805781528353691, -0.01824733428657055, -0.04121600463986397, -0.007636285852640867, 0.03225184231996536, 0.018949154764413834, 9.352207416668534e-05]\n"
+ ]
+ }
+ ],
+ "source": [
+ "test_embedding = emb_text(\"This is a test\")\n",
+ "embedding_dim = len(test_embedding)\n",
+ "print(embedding_dim)\n",
+ "print(test_embedding[:10])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Process Data Using Docling\n",
+ "\n",
+ "Docling can parse various document formats into a unified representation (Docling Document), which can then be exported to different output formats. For a full list of supported input and output formats, please refer to [the official documentation](https://docling-project.github.io/docling/usage/supported_formats/).\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "In this tutorial, we will use a Markdown file ([source](https://milvus.io/docs/overview.md)) as the input. We will process the document using a **HierarchicalChunker** provided by Docling to generate structured, hierarchical chunks suitable for downstream RAG tasks."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from docling_core.transforms.chunker import HierarchicalChunker\n",
+ "\n",
+ "from docling.document_converter import DocumentConverter\n",
+ "\n",
+ "converter = DocumentConverter()\n",
+ "chunker = HierarchicalChunker()\n",
+ "\n",
+ "# Convert the input file to Docling Document\n",
+ "source = \"https://milvus.io/docs/overview.md\"\n",
+ "doc = converter.convert(source).document\n",
+ "\n",
+ "# Perform hierarchical chunking\n",
+ "texts = [chunk.text for chunk in chunker.chunk(doc)]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Load Data into Milvus\n",
+ "\n",
+ "### Create the collection\n",
+ "\n",
+ "With data in hand, we can create a `MilvusClient` instance and insert the data into a Milvus collection. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from pymilvus import MilvusClient\n",
+ "\n",
+ "milvus_client = MilvusClient(uri=\"./milvus_demo.db\")\n",
+ "collection_name = \"my_rag_collection\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "> As for the argument of `MilvusClient`:\n",
+ "> - Setting the `uri` as a local file, e.g.`./milvus.db`, is the most convenient method, as it automatically utilizes [Milvus Lite](https://milvus.io/docs/milvus_lite.md) to store all data in this file.\n",
+ "> - If you have large scale of data, you can set up a more performant Milvus server on [docker or kubernetes](https://milvus.io/docs/quickstart.md). In this setup, please use the server uri, e.g.`http://localhost:19530`, as your `uri`.\n",
+ "> - If you want to use [Zilliz Cloud](https://zilliz.com/cloud), the fully managed cloud service for Milvus, adjust the `uri` and `token`, which correspond to the [Public Endpoint and Api key](https://docs.zilliz.com/docs/on-zilliz-cloud-console#free-cluster-details) in Zilliz Cloud."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Check if the collection already exists and drop it if it does."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "if milvus_client.has_collection(collection_name):\n",
+ " milvus_client.drop_collection(collection_name)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Create a new collection with specified parameters.\n",
+ "\n",
+ "If we donβt specify any field information, Milvus will automatically create a default `id` field for primary key, and a `vector` field to store the vector data. A reserved JSON field is used to store non-schema-defined fields and their values."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "milvus_client.create_collection(\n",
+ " collection_name=collection_name,\n",
+ " dimension=embedding_dim,\n",
+ " metric_type=\"IP\", # Inner product distance\n",
+ " consistency_level=\"Strong\", # Supported values are (`\"Strong\"`, `\"Session\"`, `\"Bounded\"`, `\"Eventually\"`). See https://milvus.io/docs/consistency.md#Consistency-Level for more details.\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Insert data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Processing chunks: 100%|ββββββββββ| 38/38 [00:14<00:00, 2.59it/s]\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "{'insert_count': 38, 'ids': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37], 'cost': 0}"
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "from tqdm import tqdm\n",
+ "\n",
+ "data = []\n",
+ "\n",
+ "for i, chunk in enumerate(tqdm(texts, desc=\"Processing chunks\")):\n",
+ " embedding = emb_text(chunk)\n",
+ " data.append({\"id\": i, \"vector\": embedding, \"text\": chunk})\n",
+ "\n",
+ "milvus_client.insert(collection_name=collection_name, data=data)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Build RAG"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Retrieve data for a query\n",
+ "\n",
+ "Letβs specify a query question about the website we just scraped."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "question = (\n",
+ " \"What are the three deployment modes of Milvus, and what are their differences?\"\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Search for the question in the collection and retrieve the semantic top-3 matches."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "search_res = milvus_client.search(\n",
+ " collection_name=collection_name,\n",
+ " data=[emb_text(question)],\n",
+ " limit=3,\n",
+ " search_params={\"metric_type\": \"IP\", \"params\": {}},\n",
+ " output_fields=[\"text\"],\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Letβs take a look at the search results of the query\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[\n",
+ " [\n",
+ " \"Milvus offers three deployment modes, covering a wide range of data scales\\u2014from local prototyping in Jupyter Notebooks to massive Kubernetes clusters managing tens of billions of vectors:\",\n",
+ " 0.6503315567970276\n",
+ " ],\n",
+ " [\n",
+ " \"Milvus Lite is a Python library that can be easily integrated into your applications. As a lightweight version of Milvus, it\\u2019s ideal for quick prototyping in Jupyter Notebooks or running on edge devices with limited resources. Learn more.\\nMilvus Standalone is a single-machine server deployment, with all components bundled into a single Docker image for convenient deployment. Learn more.\\nMilvus Distributed can be deployed on Kubernetes clusters, featuring a cloud-native architecture designed for billion-scale or even larger scenarios. This architecture ensures redundancy in critical components. Learn more.\",\n",
+ " 0.6281915903091431\n",
+ " ],\n",
+ " [\n",
+ " \"What is Milvus?\\nUnstructured Data, Embeddings, and Milvus\\nWhat Makes Milvus so Fast\\uff1f\\nWhat Makes Milvus so Scalable\\nTypes of Searches Supported by Milvus\\nComprehensive Feature Set\",\n",
+ " 0.6117826700210571\n",
+ " ]\n",
+ "]\n"
+ ]
+ }
+ ],
+ "source": [
+ "import json\n",
+ "\n",
+ "retrieved_lines_with_distances = [\n",
+ " (res[\"entity\"][\"text\"], res[\"distance\"]) for res in search_res[0]\n",
+ "]\n",
+ "print(json.dumps(retrieved_lines_with_distances, indent=4))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Use LLM to get a RAG response\n",
+ "\n",
+ "Convert the retrieved documents into a string format.\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "context = \"\\n\".join(\n",
+ " [line_with_distance[0] for line_with_distance in retrieved_lines_with_distances]\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Define system and user prompts for the Lanage Model. This prompt is assembled with the retrieved documents from Milvus.\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "SYSTEM_PROMPT = \"\"\"\n",
+ "Human: You are an AI assistant. You are able to find answers to the questions from the contextual passage snippets provided.\n",
+ "\"\"\"\n",
+ "USER_PROMPT = f\"\"\"\n",
+ "Use the following pieces of information enclosed in tags to provide an answer to the question enclosed in tags.\n",
+ "\n",
+ "{context}\n",
+ "\n",
+ "\n",
+ "{question}\n",
+ "\n",
+ "\"\"\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Use OpenAI ChatGPT to generate a response based on the prompts."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The three deployment modes of Milvus are:\n",
+ "\n",
+ "1. **Milvus Lite**: This is a Python library that integrates easily into your applications. It's a lightweight version ideal for quick prototyping in Jupyter Notebooks or for running on edge devices with limited resources.\n",
+ "\n",
+ "2. **Milvus Standalone**: This mode is a single-machine server deployment where all components are bundled into a single Docker image, making it convenient to deploy.\n",
+ "\n",
+ "3. **Milvus Distributed**: This mode is designed for deployment on Kubernetes clusters. It features a cloud-native architecture suited for managing scenarios at a billion-scale or larger, ensuring redundancy in critical components.\n"
+ ]
+ }
+ ],
+ "source": [
+ "response = openai_client.chat.completions.create(\n",
+ " model=\"gpt-4o\",\n",
+ " messages=[\n",
+ " {\"role\": \"system\", \"content\": SYSTEM_PROMPT},\n",
+ " {\"role\": \"user\", \"content\": USER_PROMPT},\n",
+ " ],\n",
+ ")\n",
+ "print(response.choices[0].message.content)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "base",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.11.5"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/mkdocs.yml b/mkdocs.yml
index dd842d6..cff7b4c 100644
--- a/mkdocs.yml
+++ b/mkdocs.yml
@@ -101,6 +101,7 @@ nav:
- "Figure enrichment": examples/develop_picture_enrichment.py
- "Formula enrichment": examples/develop_formula_understanding.py
- ποΈ More examples:
+ - examples/rag_milvus.ipynb
- examples/rag_weaviate.ipynb
- RAG with Granite [β]: https://github.com/ibm-granite-community/granite-snack-cookbook/blob/main/recipes/RAG/Granite_Docling_RAG.ipynb
- examples/rag_azuresearch.ipynb