feat(ocr): added support for RapidOCR engine (#415)

* adding rapidocr engine for ocr in docling

Signed-off-by: swayam-singhal <swayam.singhal@inito.com>

* fixing styling format

Signed-off-by: Swaymaw <swaymaw@gmail.com>

* updating pyproject.toml and poetry.lock to fix ci bugs

Signed-off-by: Swaymaw <swaymaw@gmail.com>

* help poetry pinning for python3.9

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

* simplifying rapidocr options so that device can be changed using a single option for all models

Signed-off-by: Swaymaw <swaymaw@gmail.com>

* fix styling issues and small bug in rapidOcrOptions

Signed-off-by: Swaymaw <swaymaw@gmail.com>

* use default device until we enable global management

Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>

---------

Signed-off-by: swayam-singhal <swayam.singhal@inito.com>
Signed-off-by: Swaymaw <swaymaw@gmail.com>
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
Co-authored-by: swayam-singhal <swayam.singhal@inito.com>
Co-authored-by: Michele Dolfi <dol@zurich.ibm.com>
This commit is contained in:
Swaymaw 2024-11-27 18:27:41 +05:30 committed by GitHub
parent 767563bf8b
commit 85b29990be
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
9 changed files with 405 additions and 13 deletions

View File

@ -27,6 +27,7 @@ from docling.datamodel.pipeline_options import (
OcrMacOptions,
OcrOptions,
PdfPipelineOptions,
RapidOcrOptions,
TableFormerMode,
TesseractCliOcrOptions,
TesseractOcrOptions,
@ -76,6 +77,7 @@ class OcrEngine(str, Enum):
TESSERACT_CLI = "tesseract_cli"
TESSERACT = "tesseract"
OCRMAC = "ocrmac"
RAPIDOCR = "rapidocr"
def export_documents(
@ -262,6 +264,8 @@ def convert(
ocr_options = TesseractOcrOptions(force_full_page_ocr=force_ocr)
elif ocr_engine == OcrEngine.OCRMAC:
ocr_options = OcrMacOptions(force_full_page_ocr=force_ocr)
elif ocr_engine == OcrEngine.RAPIDOCR:
ocr_options = RapidOcrOptions(force_full_page_ocr=force_ocr)
else:
raise RuntimeError(f"Unexpected OCR engine type {ocr_engine}")

View File

@ -29,6 +29,42 @@ class OcrOptions(BaseModel):
)
class RapidOcrOptions(OcrOptions):
kind: Literal["rapidocr"] = "rapidocr"
# English and chinese are the most commly used models and have been tested with RapidOCR.
lang: List[str] = [
"english",
"chinese",
] # However, language as a parameter is not supported by rapidocr yet and hence changing this options doesn't affect anything.
# For more details on supported languages by RapidOCR visit https://rapidai.github.io/RapidOCRDocs/blog/2022/09/28/%E6%94%AF%E6%8C%81%E8%AF%86%E5%88%AB%E8%AF%AD%E8%A8%80/
# For more details on the following options visit https://rapidai.github.io/RapidOCRDocs/install_usage/api/RapidOCR/
text_score: float = 0.5 # same default as rapidocr
use_det: Optional[bool] = None # same default as rapidocr
use_cls: Optional[bool] = None # same default as rapidocr
use_rec: Optional[bool] = None # same default as rapidocr
# class Device(Enum):
# CPU = "CPU"
# CUDA = "CUDA"
# DIRECTML = "DIRECTML"
# AUTO = "AUTO"
# device: Device = Device.AUTO # Default value is AUTO
print_verbose: bool = False # same default as rapidocr
det_model_path: Optional[str] = None # same default as rapidocr
cls_model_path: Optional[str] = None # same default as rapidocr
rec_model_path: Optional[str] = None # same default as rapidocr
model_config = ConfigDict(
extra="forbid",
)
class EasyOcrOptions(OcrOptions):
kind: Literal["easyocr"] = "easyocr"
lang: List[str] = ["fr", "de", "es", "en"]

View File

@ -0,0 +1,147 @@
import logging
from typing import Iterable
import numpy
from docling_core.types.doc import BoundingBox, CoordOrigin
from docling.datamodel.base_models import OcrCell, Page
from docling.datamodel.document import ConversionResult
from docling.datamodel.pipeline_options import RapidOcrOptions
from docling.datamodel.settings import settings
from docling.models.base_ocr_model import BaseOcrModel
from docling.utils.profiling import TimeRecorder
_log = logging.getLogger(__name__)
class RapidOcrModel(BaseOcrModel):
def __init__(self, enabled: bool, options: RapidOcrOptions):
super().__init__(enabled=enabled, options=options)
self.options: RapidOcrOptions
self.scale = 3 # multiplier for 72 dpi == 216 dpi.
if self.enabled:
try:
from rapidocr_onnxruntime import RapidOCR # type: ignore
except ImportError:
raise ImportError(
"RapidOCR is not installed. Please install it via `pip install rapidocr_onnxruntime` to use this OCR engine. "
"Alternatively, Docling has support for other OCR engines. See the documentation."
)
# This configuration option will be revamped while introducing device settings for all models.
# For the moment we will default to auto and let onnx-runtime pick the best.
cls_use_cuda = True
rec_use_cuda = True
det_use_cuda = True
det_use_dml = True
cls_use_dml = True
rec_use_dml = True
# # Same as Defaults in RapidOCR
# cls_use_cuda = False
# rec_use_cuda = False
# det_use_cuda = False
# det_use_dml = False
# cls_use_dml = False
# rec_use_dml = False
# # If we set everything to true onnx-runtime would automatically choose the fastest accelerator
# if self.options.device == self.options.Device.AUTO:
# cls_use_cuda = True
# rec_use_cuda = True
# det_use_cuda = True
# det_use_dml = True
# cls_use_dml = True
# rec_use_dml = True
# # If we set use_cuda to true onnx would use the cuda device available in runtime if no cuda device is available it would run on CPU.
# elif self.options.device == self.options.Device.CUDA:
# cls_use_cuda = True
# rec_use_cuda = True
# det_use_cuda = True
# # If we set use_dml to true onnx would use the dml device available in runtime if no dml device is available it would work on CPU.
# elif self.options.device == self.options.Device.DIRECTML:
# det_use_dml = True
# cls_use_dml = True
# rec_use_dml = True
self.reader = RapidOCR(
text_score=self.options.text_score,
cls_use_cuda=cls_use_cuda,
rec_use_cuda=rec_use_cuda,
det_use_cuda=det_use_cuda,
det_use_dml=det_use_dml,
cls_use_dml=cls_use_dml,
rec_use_dml=rec_use_dml,
print_verbose=self.options.print_verbose,
det_model_path=self.options.det_model_path,
cls_model_path=self.options.cls_model_path,
rec_model_path=self.options.rec_model_path,
)
def __call__(
self, conv_res: ConversionResult, page_batch: Iterable[Page]
) -> Iterable[Page]:
if not self.enabled:
yield from page_batch
return
for page in page_batch:
assert page._backend is not None
if not page._backend.is_valid():
yield page
else:
with TimeRecorder(conv_res, "ocr"):
ocr_rects = self.get_ocr_rects(page)
all_ocr_cells = []
for ocr_rect in ocr_rects:
# Skip zero area boxes
if ocr_rect.area() == 0:
continue
high_res_image = page._backend.get_page_image(
scale=self.scale, cropbox=ocr_rect
)
im = numpy.array(high_res_image)
result, _ = self.reader(
im,
use_det=self.options.use_det,
use_cls=self.options.use_cls,
use_rec=self.options.use_rec,
)
del high_res_image
del im
cells = [
OcrCell(
id=ix,
text=line[1],
confidence=line[2],
bbox=BoundingBox.from_tuple(
coord=(
(line[0][0][0] / self.scale) + ocr_rect.l,
(line[0][0][1] / self.scale) + ocr_rect.t,
(line[0][2][0] / self.scale) + ocr_rect.l,
(line[0][2][1] / self.scale) + ocr_rect.t,
),
origin=CoordOrigin.TOPLEFT,
),
)
for ix, line in enumerate(result)
]
all_ocr_cells.extend(cells)
# Post-process the cells
page.cells = self.post_process_cells(all_ocr_cells, page.cells)
# DEBUG code:
if settings.debug.visualize_ocr:
self.draw_ocr_rects_and_cells(conv_res, page, ocr_rects)
yield page

View File

@ -13,6 +13,7 @@ from docling.datamodel.pipeline_options import (
EasyOcrOptions,
OcrMacOptions,
PdfPipelineOptions,
RapidOcrOptions,
TesseractCliOcrOptions,
TesseractOcrOptions,
)
@ -26,6 +27,7 @@ from docling.models.page_preprocessing_model import (
PagePreprocessingModel,
PagePreprocessingOptions,
)
from docling.models.rapid_ocr_model import RapidOcrModel
from docling.models.table_structure_model import TableStructureModel
from docling.models.tesseract_ocr_cli_model import TesseractOcrCliModel
from docling.models.tesseract_ocr_model import TesseractOcrModel
@ -121,6 +123,11 @@ class StandardPdfPipeline(PaginatedPipeline):
enabled=self.pipeline_options.do_ocr,
options=self.pipeline_options.ocr_options,
)
elif isinstance(self.pipeline_options.ocr_options, RapidOcrOptions):
return RapidOcrModel(
enabled=self.pipeline_options.do_ocr,
options=self.pipeline_options.ocr_options,
)
elif isinstance(self.pipeline_options.ocr_options, OcrMacOptions):
if "darwin" != sys.platform:
raise RuntimeError(

View File

@ -6,6 +6,7 @@ from docling.datamodel.pipeline_options import (
EasyOcrOptions,
OcrMacOptions,
PdfPipelineOptions,
RapidOcrOptions,
TesseractCliOcrOptions,
TesseractOcrOptions,
)
@ -20,10 +21,11 @@ def main():
pipeline_options.do_table_structure = True
pipeline_options.table_structure_options.do_cell_matching = True
# Any of the OCR options can be used:EasyOcrOptions, TesseractOcrOptions, TesseractCliOcrOptions, OcrMacOptions(Mac only)
# Any of the OCR options can be used:EasyOcrOptions, TesseractOcrOptions, TesseractCliOcrOptions, OcrMacOptions(Mac only), RapidOcrOptions
# ocr_options = EasyOcrOptions(force_full_page_ocr=True)
# ocr_options = TesseractOcrOptions(force_full_page_ocr=True)
# ocr_options = OcrMacOptions(force_full_page_ocr=True)
# ocr_options = RapidOcrOptions(force_full_page_ocr=True)
ocr_options = TesseractCliOcrOptions(force_full_page_ocr=True)
pipeline_options.ocr_options = ocr_options

View File

@ -31,6 +31,7 @@ Works on macOS, Linux, and Windows, with support for both x86_64 and arm64 archi
| Tesseract | System dependency. See description for Tesseract and Tesserocr below. | `TesseractOcrOptions` |
| Tesseract CLI | System dependency. See description below. | `TesseractCliOcrOptions` |
| OcrMac | System dependency. See description below. | `OcrMacOptions` |
| [RapidOCR](https://github.com/RapidAI/RapidOCR) | Extra feature not included in Default Docling installation can be installed via `pip install rapidocr_onnxruntime` | `RapidOcrOptions` |
The Docling `DocumentConverter` allows to choose the OCR engine with the `ocr_options` settings. For example

208
poetry.lock generated
View File

@ -182,8 +182,8 @@ files = [
lazy-object-proxy = ">=1.4.0"
typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.11\""}
wrapt = [
{version = ">=1.14,<2", markers = "python_version >= \"3.11\""},
{version = ">=1.11,<2", markers = "python_version < \"3.11\""},
{version = ">=1.14,<2", markers = "python_version >= \"3.11\""},
]
[[package]]
@ -618,6 +618,23 @@ files = [
{file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"},
]
[[package]]
name = "coloredlogs"
version = "15.0.1"
description = "Colored terminal output for Python's logging module"
optional = true
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*"
files = [
{file = "coloredlogs-15.0.1-py2.py3-none-any.whl", hash = "sha256:612ee75c546f53e92e70049c9dbfcc18c935a2b9a53b66085ce9ef6a6e5c0934"},
{file = "coloredlogs-15.0.1.tar.gz", hash = "sha256:7c991aa71a4577af2f82600d8f8f3a89f936baeaf9b50a9c197da014e5bf16b0"},
]
[package.dependencies]
humanfriendly = ">=9.1"
[package.extras]
cron = ["capturer (>=2.4)"]
[[package]]
name = "comm"
version = "0.2.2"
@ -825,8 +842,8 @@ files = [
docling-core = ">=2.0,<3.0"
docutils = "!=0.21"
numpy = [
{version = ">=2.0.2,<3.0.0", markers = "python_version >= \"3.13\""},
{version = ">=1.26.4,<2.0.0", markers = "python_version >= \"3.9\" and python_version < \"3.13\""},
{version = ">=2.0.2,<3.0.0", markers = "python_version >= \"3.13\""},
]
pandas = {version = ">=2.1.4,<3.0.0", markers = "python_version >= \"3.9\""}
python-dotenv = ">=1.0.0,<2.0.0"
@ -912,8 +929,8 @@ files = [
huggingface_hub = ">=0.23,<1"
jsonlines = ">=3.1.0,<4.0.0"
numpy = [
{version = ">=2.1.0,<3.0.0", markers = "python_version >= \"3.13\""},
{version = ">=1.24.4,<2.0.0", markers = "python_version < \"3.13\""},
{version = ">=2.1.0,<3.0.0", markers = "python_version >= \"3.13\""},
]
opencv-python-headless = ">=4.6.0.66,<5.0.0.0"
Pillow = ">=10.0.0,<11.0.0"
@ -1145,6 +1162,17 @@ TOMLi = {version = "*", markers = "python_version < \"3.11\""}
[package.extras]
dev = ["pyTest", "pyTest-cov"]
[[package]]
name = "flatbuffers"
version = "24.3.25"
description = "The FlatBuffers serialization format for Python"
optional = true
python-versions = "*"
files = [
{file = "flatbuffers-24.3.25-py2.py3-none-any.whl", hash = "sha256:8dbdec58f935f3765e4f7f3cf635ac3a77f83568138d6a2311f524ec96364812"},
{file = "flatbuffers-24.3.25.tar.gz", hash = "sha256:de2ec5b203f21441716617f38443e0a8ebf3d25bf0d9c0bb0ce68fa00ad546a4"},
]
[[package]]
name = "frozenlist"
version = "1.5.0"
@ -1495,6 +1523,20 @@ testing = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "aiohttp", "fastapi", "gr
torch = ["safetensors[torch]", "torch"]
typing = ["types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3", "typing-extensions (>=4.8.0)"]
[[package]]
name = "humanfriendly"
version = "10.0"
description = "Human friendly output for text interfaces using Python"
optional = true
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*"
files = [
{file = "humanfriendly-10.0-py2.py3-none-any.whl", hash = "sha256:1697e1a8a8f550fd43c2865cd84542fc175a61dcb779b6fee18cf6b6ccba1477"},
{file = "humanfriendly-10.0.tar.gz", hash = "sha256:6b0b831ce8f15f7300721aa49829fc4e83921a9a301cc7f606be6686a2288ddc"},
]
[package.dependencies]
pyreadline3 = {version = "*", markers = "sys_platform == \"win32\" and python_version >= \"3.8\""}
[[package]]
name = "identify"
version = "2.6.3"
@ -2050,8 +2092,8 @@ jsonpatch = ">=1.33,<2.0"
langsmith = ">=0.1.112,<0.2.0"
packaging = ">=23.2,<25"
pydantic = [
{version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""},
{version = ">=1,<3", markers = "python_full_version < \"3.12.4\""},
{version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""},
]
PyYAML = ">=5.3"
tenacity = ">=8.1.0,<8.4.0 || >8.4.0,<9.0.0"
@ -2119,8 +2161,8 @@ files = [
httpx = ">=0.23.0,<1"
orjson = {version = ">=3.9.14,<4.0.0", markers = "platform_python_implementation != \"PyPy\""}
pydantic = [
{version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""},
{version = ">=1,<3", markers = "python_full_version < \"3.12.4\""},
{version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""},
]
requests = ">=2,<3"
requests-toolbelt = ">=1.0.0,<2.0.0"
@ -3524,6 +3566,112 @@ Click = ">=7.0"
pillow = "*"
pyobjc-framework-Vision = "*"
[[package]]
name = "onnxruntime"
version = "1.19.2"
description = "ONNX Runtime is a runtime accelerator for Machine Learning models"
optional = true
python-versions = "*"
files = [
{file = "onnxruntime-1.19.2-cp310-cp310-macosx_11_0_universal2.whl", hash = "sha256:84fa57369c06cadd3c2a538ae2a26d76d583e7c34bdecd5769d71ca5c0fc750e"},
{file = "onnxruntime-1.19.2-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:bdc471a66df0c1cdef774accef69e9f2ca168c851ab5e4f2f3341512c7ef4666"},
{file = "onnxruntime-1.19.2-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:e3a4ce906105d99ebbe817f536d50a91ed8a4d1592553f49b3c23c4be2560ae6"},
{file = "onnxruntime-1.19.2-cp310-cp310-win32.whl", hash = "sha256:4b3d723cc154c8ddeb9f6d0a8c0d6243774c6b5930847cc83170bfe4678fafb3"},
{file = "onnxruntime-1.19.2-cp310-cp310-win_amd64.whl", hash = "sha256:17ed7382d2c58d4b7354fb2b301ff30b9bf308a1c7eac9546449cd122d21cae5"},
{file = "onnxruntime-1.19.2-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:d863e8acdc7232d705d49e41087e10b274c42f09e259016a46f32c34e06dc4fd"},
{file = "onnxruntime-1.19.2-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:c1dfe4f660a71b31caa81fc298a25f9612815215a47b286236e61d540350d7b6"},
{file = "onnxruntime-1.19.2-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:a36511dc07c5c964b916697e42e366fa43c48cdb3d3503578d78cef30417cb84"},
{file = "onnxruntime-1.19.2-cp311-cp311-win32.whl", hash = "sha256:50cbb8dc69d6befad4746a69760e5b00cc3ff0a59c6c3fb27f8afa20e2cab7e7"},
{file = "onnxruntime-1.19.2-cp311-cp311-win_amd64.whl", hash = "sha256:1c3e5d415b78337fa0b1b75291e9ea9fb2a4c1f148eb5811e7212fed02cfffa8"},
{file = "onnxruntime-1.19.2-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:68e7051bef9cfefcbb858d2d2646536829894d72a4130c24019219442b1dd2ed"},
{file = "onnxruntime-1.19.2-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:d2d366fbcc205ce68a8a3bde2185fd15c604d9645888703785b61ef174265168"},
{file = "onnxruntime-1.19.2-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:477b93df4db467e9cbf34051662a4b27c18e131fa1836e05974eae0d6e4cf29b"},
{file = "onnxruntime-1.19.2-cp312-cp312-win32.whl", hash = "sha256:9a174073dc5608fad05f7cf7f320b52e8035e73d80b0a23c80f840e5a97c0147"},
{file = "onnxruntime-1.19.2-cp312-cp312-win_amd64.whl", hash = "sha256:190103273ea4507638ffc31d66a980594b237874b65379e273125150eb044857"},
{file = "onnxruntime-1.19.2-cp38-cp38-macosx_11_0_universal2.whl", hash = "sha256:636bc1d4cc051d40bc52e1f9da87fbb9c57d9d47164695dfb1c41646ea51ea66"},
{file = "onnxruntime-1.19.2-cp38-cp38-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:5bd8b875757ea941cbcfe01582970cc299893d1b65bd56731e326a8333f638a3"},
{file = "onnxruntime-1.19.2-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:b2046fc9560f97947bbc1acbe4c6d48585ef0f12742744307d3364b131ac5778"},
{file = "onnxruntime-1.19.2-cp38-cp38-win32.whl", hash = "sha256:31c12840b1cde4ac1f7d27d540c44e13e34f2345cf3642762d2a3333621abb6a"},
{file = "onnxruntime-1.19.2-cp38-cp38-win_amd64.whl", hash = "sha256:016229660adea180e9a32ce218b95f8f84860a200f0f13b50070d7d90e92956c"},
{file = "onnxruntime-1.19.2-cp39-cp39-macosx_11_0_universal2.whl", hash = "sha256:006c8d326835c017a9e9f74c9c77ebb570a71174a1e89fe078b29a557d9c3848"},
{file = "onnxruntime-1.19.2-cp39-cp39-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:df2a94179a42d530b936f154615b54748239c2908ee44f0d722cb4df10670f68"},
{file = "onnxruntime-1.19.2-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:fae4b4de45894b9ce7ae418c5484cbf0341db6813effec01bb2216091c52f7fb"},
{file = "onnxruntime-1.19.2-cp39-cp39-win32.whl", hash = "sha256:dc5430f473e8706fff837ae01323be9dcfddd3ea471c900a91fa7c9b807ec5d3"},
{file = "onnxruntime-1.19.2-cp39-cp39-win_amd64.whl", hash = "sha256:38475e29a95c5f6c62c2c603d69fc7d4c6ccbf4df602bd567b86ae1138881c49"},
]
[package.dependencies]
coloredlogs = "*"
flatbuffers = "*"
numpy = ">=1.21.6"
packaging = "*"
protobuf = "*"
sympy = "*"
[[package]]
name = "onnxruntime"
version = "1.20.1"
description = "ONNX Runtime is a runtime accelerator for Machine Learning models"
optional = true
python-versions = "*"
files = [
{file = "onnxruntime-1.20.1-cp310-cp310-macosx_13_0_universal2.whl", hash = "sha256:e50ba5ff7fed4f7d9253a6baf801ca2883cc08491f9d32d78a80da57256a5439"},
{file = "onnxruntime-1.20.1-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:7b2908b50101a19e99c4d4e97ebb9905561daf61829403061c1adc1b588bc0de"},
{file = "onnxruntime-1.20.1-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:d82daaec24045a2e87598b8ac2b417b1cce623244e80e663882e9fe1aae86410"},
{file = "onnxruntime-1.20.1-cp310-cp310-win32.whl", hash = "sha256:4c4b251a725a3b8cf2aab284f7d940c26094ecd9d442f07dd81ab5470e99b83f"},
{file = "onnxruntime-1.20.1-cp310-cp310-win_amd64.whl", hash = "sha256:d3b616bb53a77a9463707bb313637223380fc327f5064c9a782e8ec69c22e6a2"},
{file = "onnxruntime-1.20.1-cp311-cp311-macosx_13_0_universal2.whl", hash = "sha256:06bfbf02ca9ab5f28946e0f912a562a5f005301d0c419283dc57b3ed7969bb7b"},
{file = "onnxruntime-1.20.1-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:f6243e34d74423bdd1edf0ae9596dd61023b260f546ee17d701723915f06a9f7"},
{file = "onnxruntime-1.20.1-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:5eec64c0269dcdb8d9a9a53dc4d64f87b9e0c19801d9321246a53b7eb5a7d1bc"},
{file = "onnxruntime-1.20.1-cp311-cp311-win32.whl", hash = "sha256:a19bc6e8c70e2485a1725b3d517a2319603acc14c1f1a017dda0afe6d4665b41"},
{file = "onnxruntime-1.20.1-cp311-cp311-win_amd64.whl", hash = "sha256:8508887eb1c5f9537a4071768723ec7c30c28eb2518a00d0adcd32c89dea3221"},
{file = "onnxruntime-1.20.1-cp312-cp312-macosx_13_0_universal2.whl", hash = "sha256:22b0655e2bf4f2161d52706e31f517a0e54939dc393e92577df51808a7edc8c9"},
{file = "onnxruntime-1.20.1-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:f1f56e898815963d6dc4ee1c35fc6c36506466eff6d16f3cb9848cea4e8c8172"},
{file = "onnxruntime-1.20.1-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:bb71a814f66517a65628c9e4a2bb530a6edd2cd5d87ffa0af0f6f773a027d99e"},
{file = "onnxruntime-1.20.1-cp312-cp312-win32.whl", hash = "sha256:bd386cc9ee5f686ee8a75ba74037750aca55183085bf1941da8efcfe12d5b120"},
{file = "onnxruntime-1.20.1-cp312-cp312-win_amd64.whl", hash = "sha256:19c2d843eb074f385e8bbb753a40df780511061a63f9def1b216bf53860223fb"},
{file = "onnxruntime-1.20.1-cp313-cp313-macosx_13_0_universal2.whl", hash = "sha256:cc01437a32d0042b606f462245c8bbae269e5442797f6213e36ce61d5abdd8cc"},
{file = "onnxruntime-1.20.1-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:fb44b08e017a648924dbe91b82d89b0c105b1adcfe31e90d1dc06b8677ad37be"},
{file = "onnxruntime-1.20.1-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:bda6aebdf7917c1d811f21d41633df00c58aff2bef2f598f69289c1f1dabc4b3"},
{file = "onnxruntime-1.20.1-cp313-cp313-win_amd64.whl", hash = "sha256:d30367df7e70f1d9fc5a6a68106f5961686d39b54d3221f760085524e8d38e16"},
{file = "onnxruntime-1.20.1-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:c9158465745423b2b5d97ed25aa7740c7d38d2993ee2e5c3bfacb0c4145c49d8"},
{file = "onnxruntime-1.20.1-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:0df6f2df83d61f46e842dbcde610ede27218947c33e994545a22333491e72a3b"},
]
[package.dependencies]
coloredlogs = "*"
flatbuffers = "*"
numpy = ">=1.21.6"
packaging = "*"
protobuf = "*"
sympy = "*"
[[package]]
name = "opencv-python"
version = "4.10.0.84"
description = "Wrapper package for OpenCV python bindings."
optional = true
python-versions = ">=3.6"
files = [
{file = "opencv-python-4.10.0.84.tar.gz", hash = "sha256:72d234e4582e9658ffea8e9cae5b63d488ad06994ef12d81dc303b17472f3526"},
{file = "opencv_python-4.10.0.84-cp37-abi3-macosx_11_0_arm64.whl", hash = "sha256:fc182f8f4cda51b45f01c64e4cbedfc2f00aff799debebc305d8d0210c43f251"},
{file = "opencv_python-4.10.0.84-cp37-abi3-macosx_12_0_x86_64.whl", hash = "sha256:71e575744f1d23f79741450254660442785f45a0797212852ee5199ef12eed98"},
{file = "opencv_python-4.10.0.84-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:09a332b50488e2dda866a6c5573ee192fe3583239fb26ff2f7f9ceb0bc119ea6"},
{file = "opencv_python-4.10.0.84-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ace140fc6d647fbe1c692bcb2abce768973491222c067c131d80957c595b71f"},
{file = "opencv_python-4.10.0.84-cp37-abi3-win32.whl", hash = "sha256:2db02bb7e50b703f0a2d50c50ced72e95c574e1e5a0bb35a8a86d0b35c98c236"},
{file = "opencv_python-4.10.0.84-cp37-abi3-win_amd64.whl", hash = "sha256:32dbbd94c26f611dc5cc6979e6b7aa1f55a64d6b463cc1dcd3c95505a63e48fe"},
]
[package.dependencies]
numpy = [
{version = ">=1.21.0", markers = "python_version == \"3.9\" and platform_system == \"Darwin\" and platform_machine == \"arm64\""},
{version = ">=1.19.3", markers = "platform_system == \"Linux\" and platform_machine == \"aarch64\" and python_version >= \"3.8\" and python_version < \"3.10\" or python_version > \"3.9\" and python_version < \"3.10\" or python_version >= \"3.9\" and platform_system != \"Darwin\" and python_version < \"3.10\" or python_version >= \"3.9\" and platform_machine != \"arm64\" and python_version < \"3.10\""},
{version = ">=1.26.0", markers = "python_version >= \"3.12\""},
{version = ">=1.23.5", markers = "python_version >= \"3.11\" and python_version < \"3.12\""},
{version = ">=1.21.4", markers = "python_version >= \"3.10\" and platform_system == \"Darwin\" and python_version < \"3.11\""},
{version = ">=1.21.2", markers = "platform_system != \"Darwin\" and python_version >= \"3.10\" and python_version < \"3.11\""},
]
[[package]]
name = "opencv-python-headless"
version = "4.10.0.84"
@ -3542,12 +3690,12 @@ files = [
[package.dependencies]
numpy = [
{version = ">=1.26.0", markers = "python_version >= \"3.12\""},
{version = ">=1.21.0", markers = "python_version == \"3.9\" and platform_system == \"Darwin\" and platform_machine == \"arm64\""},
{version = ">=1.19.3", markers = "platform_system == \"Linux\" and platform_machine == \"aarch64\" and python_version >= \"3.8\" and python_version < \"3.10\" or python_version > \"3.9\" and python_version < \"3.10\" or python_version >= \"3.9\" and platform_system != \"Darwin\" and python_version < \"3.10\" or python_version >= \"3.9\" and platform_machine != \"arm64\" and python_version < \"3.10\""},
{version = ">=1.26.0", markers = "python_version >= \"3.12\""},
{version = ">=1.23.5", markers = "python_version >= \"3.11\" and python_version < \"3.12\""},
{version = ">=1.21.4", markers = "python_version >= \"3.10\" and platform_system == \"Darwin\" and python_version < \"3.11\""},
{version = ">=1.21.2", markers = "platform_system != \"Darwin\" and python_version >= \"3.10\" and python_version < \"3.11\""},
{version = ">=1.19.3", markers = "platform_system == \"Linux\" and platform_machine == \"aarch64\" and python_version >= \"3.8\" and python_version < \"3.10\" or python_version > \"3.9\" and python_version < \"3.10\" or python_version >= \"3.9\" and platform_system != \"Darwin\" and python_version < \"3.10\" or python_version >= \"3.9\" and platform_machine != \"arm64\" and python_version < \"3.10\""},
{version = ">=1.23.5", markers = "python_version >= \"3.11\" and python_version < \"3.12\""},
]
[[package]]
@ -3727,8 +3875,8 @@ files = [
[package.dependencies]
numpy = [
{version = ">=1.26.0", markers = "python_version >= \"3.12\""},
{version = ">=1.22.4", markers = "python_version < \"3.11\""},
{version = ">=1.26.0", markers = "python_version >= \"3.12\""},
{version = ">=1.23.2", markers = "python_version == \"3.11\""},
]
python-dateutil = ">=2.8.2"
@ -4326,8 +4474,8 @@ files = [
annotated-types = ">=0.6.0"
pydantic-core = "2.23.4"
typing-extensions = [
{version = ">=4.12.2", markers = "python_version >= \"3.13\""},
{version = ">=4.6.1", markers = "python_version < \"3.13\""},
{version = ">=4.12.2", markers = "python_version >= \"3.13\""},
]
[package.extras]
@ -4495,8 +4643,8 @@ files = [
astroid = ">=2.15.8,<=2.17.0-dev0"
colorama = {version = ">=0.4.5", markers = "sys_platform == \"win32\""}
dill = [
{version = ">=0.3.6", markers = "python_version >= \"3.11\""},
{version = ">=0.2", markers = "python_version < \"3.11\""},
{version = ">=0.3.6", markers = "python_version >= \"3.11\""},
]
isort = ">=4.2.5,<6"
mccabe = ">=0.6,<0.8"
@ -4685,6 +4833,20 @@ files = [
flake8 = "6.1.0"
tomli = {version = "*", markers = "python_version < \"3.11\""}
[[package]]
name = "pyreadline3"
version = "3.5.4"
description = "A python implementation of GNU readline."
optional = true
python-versions = ">=3.8"
files = [
{file = "pyreadline3-3.5.4-py3-none-any.whl", hash = "sha256:eaf8e6cc3c49bcccf145fc6067ba8643d1df34d604a1ec0eccbf7a18e6d3fae6"},
{file = "pyreadline3-3.5.4.tar.gz", hash = "sha256:8d57d53039a1c75adba8e50dd3d992b28143480816187ea5efbd5c78e6c885b7"},
]
[package.extras]
dev = ["build", "flake8", "mypy", "pytest", "twine"]
[[package]]
name = "pytest"
version = "7.4.4"
@ -5216,6 +5378,27 @@ files = [
[package.dependencies]
cffi = {version = "*", markers = "implementation_name == \"pypy\""}
[[package]]
name = "rapidocr-onnxruntime"
version = "1.4.0"
description = "A cross platform OCR Library based on OnnxRuntime."
optional = true
python-versions = "<3.13,>=3.6"
files = [
{file = "rapidocr_onnxruntime-1.4.0-py3-none-any.whl", hash = "sha256:d21c4ba2ef80b7a8ecf8178632f273398a92ab44a1ffb9e171139ef2a589d690"},
]
[package.dependencies]
numpy = ">=1.19.5,<3.0.0"
onnxruntime = ">=1.7.0"
opencv-python = ">=4.5.1.48"
Pillow = "*"
pyclipper = ">=1.2.0"
PyYAML = "*"
Shapely = ">=1.7.1,<2.0.4 || >2.0.4"
six = ">=1.15.0"
tqdm = "*"
[[package]]
name = "readme-renderer"
version = "44.0"
@ -7226,9 +7409,10 @@ type = ["pytest-mypy"]
[extras]
ocrmac = ["ocrmac"]
rapidocr = ["onnxruntime", "onnxruntime", "rapidocr-onnxruntime"]
tesserocr = ["tesserocr"]
[metadata]
lock-version = "2.0"
python-versions = "^3.9"
content-hash = "0e1ba9bc3f10cdd3ddf161469701ca603279bad13505ff3b7b042826e2de4c35"
content-hash = "c08324f73fb809466ad3494605a6745ec6c9f38b60e7b1f516f3f93a29534ca4"

View File

@ -50,6 +50,13 @@ marko = "^2.1.2"
openpyxl = "^3.1.5"
lxml = ">=4.0.0,<6.0.0"
ocrmac = { version = "^1.0.0", markers = "sys_platform == 'darwin'", optional = true }
rapidocr-onnxruntime = { version = "^1.4.0", optional = true, markers = "python_version < '3.13'" }
onnxruntime = [
# 1.19.2 is the last version with python3.9 support,
# see https://github.com/microsoft/onnxruntime/releases/tag/v1.20.0
{ version = ">=1.7.0,<1.20.0", optional = true, markers = "python_version < '3.10'" },
{ version = "^1.7.0", optional = true, markers = "python_version >= '3.10'" }
]
[tool.poetry.group.dev.dependencies]
black = {extras = ["jupyter"], version = "^24.4.2"}
@ -104,6 +111,7 @@ torchvision = [
[tool.poetry.extras]
tesserocr = ["tesserocr"]
ocrmac = ["ocrmac"]
rapidocr = ["rapidocr-onnxruntime", "onnxruntime"]
[tool.poetry.scripts]
docling = "docling.cli.main:app"

View File

@ -10,6 +10,7 @@ from docling.datamodel.pipeline_options import (
OcrMacOptions,
OcrOptions,
PdfPipelineOptions,
RapidOcrOptions,
TesseractCliOcrOptions,
TesseractOcrOptions,
)
@ -56,9 +57,11 @@ def test_e2e_conversions():
EasyOcrOptions(),
TesseractOcrOptions(),
TesseractCliOcrOptions(),
RapidOcrOptions(),
EasyOcrOptions(force_full_page_ocr=True),
TesseractOcrOptions(force_full_page_ocr=True),
TesseractCliOcrOptions(force_full_page_ocr=True),
RapidOcrOptions(force_full_page_ocr=True),
]
# only works on mac