feat!: Docling v2 (#117)

---------

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>
Signed-off-by: Maxim Lysak <mly@zurich.ibm.com>
Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
Signed-off-by: Panos Vagenas <35837085+vagenas@users.noreply.github.com>
Co-authored-by: Maxim Lysak <mly@zurich.ibm.com>
Co-authored-by: Michele Dolfi <dol@zurich.ibm.com>
Co-authored-by: Panos Vagenas <35837085+vagenas@users.noreply.github.com>
This commit is contained in:
Christoph Auer
2024-10-16 21:02:03 +02:00
committed by GitHub
parent d504432c1e
commit 7d3be0edeb
144 changed files with 15180 additions and 3828 deletions

View File

@@ -1,18 +0,0 @@
from pathlib import Path
from typing import Callable, Iterable, List
from docling.datamodel.base_models import Page
from docling.datamodel.pipeline_options import PipelineOptions
class BaseModelPipeline:
def __init__(self, artifacts_path: Path, pipeline_options: PipelineOptions):
self.model_pipe: List[Callable] = []
self.artifacts_path = artifacts_path
self.pipeline_options = pipeline_options
def apply(self, page_batch: Iterable[Page]) -> Iterable[Page]:
for model in self.model_pipe:
page_batch = model(page_batch)
yield from page_batch

View File

@@ -0,0 +1,190 @@
import functools
import logging
import time
import traceback
from abc import ABC, abstractmethod
from typing import Callable, Iterable, List
from docling_core.types.doc import DoclingDocument, NodeItem
from docling.backend.abstract_backend import AbstractDocumentBackend
from docling.backend.pdf_backend import PdfDocumentBackend
from docling.datamodel.base_models import (
ConversionStatus,
DoclingComponentType,
ErrorItem,
Page,
)
from docling.datamodel.document import ConversionResult, InputDocument
from docling.datamodel.pipeline_options import PipelineOptions
from docling.datamodel.settings import settings
from docling.models.base_model import BaseEnrichmentModel
from docling.utils.utils import chunkify
_log = logging.getLogger(__name__)
class BasePipeline(ABC):
def __init__(self, pipeline_options: PipelineOptions):
self.pipeline_options = pipeline_options
self.build_pipe: List[Callable] = []
self.enrichment_pipe: List[BaseEnrichmentModel] = []
def execute(self, in_doc: InputDocument, raises_on_error: bool) -> ConversionResult:
conv_res = ConversionResult(input=in_doc)
_log.info(f"Processing document {in_doc.file.name}")
try:
# These steps are building and assembling the structure of the
# output DoclingDocument
conv_res = self._build_document(in_doc, conv_res)
conv_res = self._assemble_document(in_doc, conv_res)
# From this stage, all operations should rely only on conv_res.output
conv_res = self._enrich_document(in_doc, conv_res)
conv_res.status = self._determine_status(in_doc, conv_res)
except Exception as e:
conv_res.status = ConversionStatus.FAILURE
if raises_on_error:
raise e
return conv_res
@abstractmethod
def _build_document(
self, in_doc: InputDocument, conv_res: ConversionResult
) -> ConversionResult:
pass
def _assemble_document(
self, in_doc: InputDocument, conv_res: ConversionResult
) -> ConversionResult:
return conv_res
def _enrich_document(
self, in_doc: InputDocument, conv_res: ConversionResult
) -> ConversionResult:
def _filter_elements(
doc: DoclingDocument, model: BaseEnrichmentModel
) -> Iterable[NodeItem]:
for element, _level in doc.iterate_items():
if model.is_processable(doc=doc, element=element):
yield element
for model in self.enrichment_pipe:
for element_batch in chunkify(
_filter_elements(conv_res.document, model),
settings.perf.elements_batch_size,
):
# TODO: currently we assume the element itself is modified, because
# we don't have an interface to save the element back to the document
for element in model(
doc=conv_res.document, element_batch=element_batch
): # Must exhaust!
pass
return conv_res
@abstractmethod
def _determine_status(
self, in_doc: InputDocument, conv_res: ConversionResult
) -> ConversionStatus:
pass
@classmethod
@abstractmethod
def get_default_options(cls) -> PipelineOptions:
pass
@classmethod
@abstractmethod
def is_backend_supported(cls, backend: AbstractDocumentBackend):
pass
# def _apply_on_elements(self, element_batch: Iterable[NodeItem]) -> Iterable[Any]:
# for model in self.build_pipe:
# element_batch = model(element_batch)
#
# yield from element_batch
class PaginatedPipeline(BasePipeline): # TODO this is a bad name.
def _apply_on_pages(self, page_batch: Iterable[Page]) -> Iterable[Page]:
for model in self.build_pipe:
page_batch = model(page_batch)
yield from page_batch
def _build_document(
self, in_doc: InputDocument, conv_res: ConversionResult
) -> ConversionResult:
if not isinstance(in_doc._backend, PdfDocumentBackend):
raise RuntimeError(
f"The selected backend {type(in_doc._backend).__name__} for {in_doc.file} is not a PDF backend. "
f"Can not convert this with a PDF pipeline. "
f"Please check your format configuration on DocumentConverter."
)
# conv_res.status = ConversionStatus.FAILURE
# return conv_res
for i in range(0, in_doc.page_count):
conv_res.pages.append(Page(page_no=i))
try:
# Iterate batches of pages (page_batch_size) in the doc
for page_batch in chunkify(conv_res.pages, settings.perf.page_batch_size):
start_pb_time = time.time()
# 1. Initialise the page resources
init_pages = map(
functools.partial(self.initialize_page, in_doc), page_batch
)
# 2. Run pipeline stages
pipeline_pages = self._apply_on_pages(init_pages)
for p in pipeline_pages: # Must exhaust!
pass
end_pb_time = time.time() - start_pb_time
_log.debug(f"Finished converting page batch time={end_pb_time:.3f}")
except Exception as e:
conv_res.status = ConversionStatus.FAILURE
trace = "\n".join(traceback.format_exception(e))
_log.warning(
f"Encountered an error during conversion of document {in_doc.document_hash}:\n"
f"{trace}"
)
raise e
finally:
# Always unload the PDF backend, even in case of failure
if in_doc._backend:
in_doc._backend.unload()
return conv_res
def _determine_status(
self, in_doc: InputDocument, conv_res: ConversionResult
) -> ConversionStatus:
status = ConversionStatus.SUCCESS
for page in conv_res.pages:
if page._backend is None or not page._backend.is_valid():
conv_res.errors.append(
ErrorItem(
component_type=DoclingComponentType.DOCUMENT_BACKEND,
module_name=type(page._backend).__name__,
error_message=f"Page {page.page_no} failed to parse.",
)
)
status = ConversionStatus.PARTIAL_SUCCESS
return status
# Initialise and load resources for a page
@abstractmethod
def initialize_page(self, doc: InputDocument, page: Page) -> Page:
pass

View File

@@ -0,0 +1,59 @@
import logging
from docling.backend.abstract_backend import (
AbstractDocumentBackend,
DeclarativeDocumentBackend,
)
from docling.datamodel.base_models import ConversionStatus
from docling.datamodel.document import ConversionResult, InputDocument
from docling.datamodel.pipeline_options import PipelineOptions
from docling.pipeline.base_pipeline import BasePipeline
_log = logging.getLogger(__name__)
class SimplePipeline(BasePipeline):
"""SimpleModelPipeline.
This class is used at the moment for formats / backends
which produce straight DoclingDocument output.
"""
def __init__(self, pipeline_options: PipelineOptions):
super().__init__(pipeline_options)
def _build_document(
self, in_doc: InputDocument, conv_res: ConversionResult
) -> ConversionResult:
if not isinstance(in_doc._backend, DeclarativeDocumentBackend):
raise RuntimeError(
f"The selected backend {type(in_doc._backend).__name__} for {in_doc.file} is not a declarative backend. "
f"Can not convert this with simple pipeline. "
f"Please check your format configuration on DocumentConverter."
)
# conv_res.status = ConversionStatus.FAILURE
# return conv_res
# Instead of running a page-level pipeline to build up the document structure,
# the backend is expected to be of type DeclarativeDocumentBackend, which can output
# a DoclingDocument straight.
conv_res.document = in_doc._backend.convert()
return conv_res
def _determine_status(
self, in_doc: InputDocument, conv_res: ConversionResult
) -> ConversionStatus:
# This is called only if the previous steps didn't raise.
# Since we don't have anything else to evaluate, we can
# safely return SUCCESS.
return ConversionStatus.SUCCESS
@classmethod
def get_default_options(cls) -> PipelineOptions:
return PipelineOptions()
@classmethod
def is_backend_supported(cls, backend: AbstractDocumentBackend):
return isinstance(backend, DeclarativeDocumentBackend)

View File

@@ -1,66 +0,0 @@
from pathlib import Path
from docling.datamodel.pipeline_options import (
EasyOcrOptions,
PipelineOptions,
TesseractCliOcrOptions,
TesseractOcrOptions,
)
from docling.models.base_ocr_model import BaseOcrModel
from docling.models.easyocr_model import EasyOcrModel
from docling.models.layout_model import LayoutModel
from docling.models.table_structure_model import TableStructureModel
from docling.models.tesseract_ocr_cli_model import TesseractOcrCliModel
from docling.models.tesseract_ocr_model import TesseractOcrModel
from docling.pipeline.base_model_pipeline import BaseModelPipeline
class StandardModelPipeline(BaseModelPipeline):
_layout_model_path = "model_artifacts/layout/beehive_v0.0.5_pt"
_table_model_path = "model_artifacts/tableformer"
def __init__(self, artifacts_path: Path, pipeline_options: PipelineOptions):
super().__init__(artifacts_path, pipeline_options)
ocr_model: BaseOcrModel
if isinstance(pipeline_options.ocr_options, EasyOcrOptions):
ocr_model = EasyOcrModel(
enabled=pipeline_options.do_ocr,
options=pipeline_options.ocr_options,
)
elif isinstance(pipeline_options.ocr_options, TesseractCliOcrOptions):
ocr_model = TesseractOcrCliModel(
enabled=pipeline_options.do_ocr,
options=pipeline_options.ocr_options,
)
elif isinstance(pipeline_options.ocr_options, TesseractOcrOptions):
ocr_model = TesseractOcrModel(
enabled=pipeline_options.do_ocr,
options=pipeline_options.ocr_options,
)
else:
raise RuntimeError(
f"The specified OCR kind is not supported: {pipeline_options.ocr_options.kind}."
)
self.model_pipe = [
# OCR
ocr_model,
# Layout
LayoutModel(
config={
"artifacts_path": artifacts_path
/ StandardModelPipeline._layout_model_path
}
),
# Table structure
TableStructureModel(
config={
"artifacts_path": artifacts_path
/ StandardModelPipeline._table_model_path,
"enabled": pipeline_options.do_table_structure,
"mode": pipeline_options.table_structure_options.mode,
"do_cell_matching": pipeline_options.table_structure_options.do_cell_matching,
}
),
]

View File

@@ -0,0 +1,198 @@
import logging
from pathlib import Path
from typing import Optional
from docling_core.types.doc import DocItem, ImageRef, PictureItem, TableItem
from docling.backend.abstract_backend import AbstractDocumentBackend
from docling.backend.pdf_backend import PdfDocumentBackend
from docling.datamodel.base_models import AssembledUnit, Page
from docling.datamodel.document import ConversionResult, InputDocument
from docling.datamodel.pipeline_options import (
EasyOcrOptions,
PdfPipelineOptions,
TesseractCliOcrOptions,
TesseractOcrOptions,
)
from docling.models.base_ocr_model import BaseOcrModel
from docling.models.ds_glm_model import GlmModel, GlmOptions
from docling.models.easyocr_model import EasyOcrModel
from docling.models.layout_model import LayoutModel
from docling.models.page_assemble_model import PageAssembleModel, PageAssembleOptions
from docling.models.page_preprocessing_model import (
PagePreprocessingModel,
PagePreprocessingOptions,
)
from docling.models.table_structure_model import TableStructureModel
from docling.models.tesseract_ocr_cli_model import TesseractOcrCliModel
from docling.models.tesseract_ocr_model import TesseractOcrModel
from docling.pipeline.base_pipeline import PaginatedPipeline
_log = logging.getLogger(__name__)
class StandardPdfPipeline(PaginatedPipeline):
_layout_model_path = "model_artifacts/layout/beehive_v0.0.5_pt"
_table_model_path = "model_artifacts/tableformer"
def __init__(self, pipeline_options: PdfPipelineOptions):
super().__init__(pipeline_options)
self.pipeline_options: PdfPipelineOptions
if pipeline_options.artifacts_path is None:
self.artifacts_path = self.download_models_hf()
else:
self.artifacts_path = Path(pipeline_options.artifacts_path)
keep_images = (
self.pipeline_options.generate_page_images
or self.pipeline_options.generate_picture_images
or self.pipeline_options.generate_table_images
)
self.glm_model = GlmModel(options=GlmOptions())
if (ocr_model := self.get_ocr_model()) is None:
raise RuntimeError(
f"The specified OCR kind is not supported: {pipeline_options.ocr_options.kind}."
)
self.build_pipe = [
# Pre-processing
PagePreprocessingModel(
options=PagePreprocessingOptions(
images_scale=pipeline_options.images_scale
)
),
# OCR
ocr_model,
# Layout model
LayoutModel(
artifacts_path=self.artifacts_path
/ StandardPdfPipeline._layout_model_path
),
# Table structure model
TableStructureModel(
enabled=pipeline_options.do_table_structure,
artifacts_path=self.artifacts_path
/ StandardPdfPipeline._table_model_path,
options=pipeline_options.table_structure_options,
),
# Page assemble
PageAssembleModel(options=PageAssembleOptions(keep_images=keep_images)),
]
self.enrichment_pipe = [
# Other models working on `NodeItem` elements in the DoclingDocument
]
@staticmethod
def download_models_hf(
local_dir: Optional[Path] = None, force: bool = False
) -> Path:
from huggingface_hub import snapshot_download
download_path = snapshot_download(
repo_id="ds4sd/docling-models",
force_download=force,
local_dir=local_dir,
revision="v2.0.1",
)
return Path(download_path)
def get_ocr_model(self) -> Optional[BaseOcrModel]:
if isinstance(self.pipeline_options.ocr_options, EasyOcrOptions):
return EasyOcrModel(
enabled=self.pipeline_options.do_ocr,
options=self.pipeline_options.ocr_options,
)
elif isinstance(self.pipeline_options.ocr_options, TesseractCliOcrOptions):
return TesseractOcrCliModel(
enabled=self.pipeline_options.do_ocr,
options=self.pipeline_options.ocr_options,
)
elif isinstance(self.pipeline_options.ocr_options, TesseractOcrOptions):
return TesseractOcrModel(
enabled=self.pipeline_options.do_ocr,
options=self.pipeline_options.ocr_options,
)
return None
def initialize_page(self, doc: InputDocument, page: Page) -> Page:
page._backend = doc._backend.load_page(page.page_no) # type: ignore
if page._backend is not None and page._backend.is_valid():
page.size = page._backend.get_size()
return page
def _assemble_document(
self, in_doc: InputDocument, conv_res: ConversionResult
) -> ConversionResult:
all_elements = []
all_headers = []
all_body = []
for p in conv_res.pages:
assert p.assembled is not None
for el in p.assembled.body:
all_body.append(el)
for el in p.assembled.headers:
all_headers.append(el)
for el in p.assembled.elements:
all_elements.append(el)
conv_res.assembled = AssembledUnit(
elements=all_elements, headers=all_headers, body=all_body
)
conv_res.document = self.glm_model(conv_res)
# Generate page images in the output
if self.pipeline_options.generate_page_images:
for page in conv_res.pages:
assert page.image is not None
page_no = page.page_no + 1
conv_res.document.pages[page_no].image = ImageRef.from_pil(
page.image, dpi=int(72 * self.pipeline_options.images_scale)
)
# Generate images of the requested element types
if (
self.pipeline_options.generate_picture_images
or self.pipeline_options.generate_table_images
):
scale = self.pipeline_options.images_scale
for element, _level in conv_res.document.iterate_items():
if not isinstance(element, DocItem) or len(element.prov) == 0:
continue
if (
isinstance(element, PictureItem)
and self.pipeline_options.generate_picture_images
) or (
isinstance(element, TableItem)
and self.pipeline_options.generate_table_images
):
page_ix = element.prov[0].page_no - 1
page = conv_res.pages[page_ix]
assert page.size is not None
assert page.image is not None
crop_bbox = (
element.prov[0]
.bbox.scaled(scale=scale)
.to_top_left_origin(page_height=page.size.height * scale)
)
cropped_im = page.image.crop(crop_bbox.as_tuple())
element.image = ImageRef.from_pil(cropped_im, dpi=int(72 * scale))
return conv_res
@classmethod
def get_default_options(cls) -> PdfPipelineOptions:
return PdfPipelineOptions()
@classmethod
def is_backend_supported(cls, backend: AbstractDocumentBackend):
return isinstance(backend, PdfDocumentBackend)