feat: Support cuda:n GPU device allocation (#694)

* Adding multi-gpu support, and cuda device allocation

Signed-off-by: ahn <ahn@zurich.ibm.com>

* Fixes pydantic exception with cuda:n
Signed-off-by: ahn <ahn@zurich.ibm.com>

* Pydantic field validator and comment restored.

Signed-off-by: ahn <ahn@zurich.ibm.com>

* chore: Accept AcceleratorDevice enum type

Signed-off-by: Christoph Auer <cau@zurich.ibm.com>

* Resetted some options to default, removed EasyOCR model wrap.
Signed-off-by: ahn <ahn@zurich.ibm.com>

* Fixed rebased issues
Signed-off-by: ahn <ahn@zurich.ibm.com>

* Revert accelerator test options
Signed-off-by: ahn <ahn@zurich.ibm.com>

---------

Signed-off-by: ahn <ahn@zurich.ibm.com>
Signed-off-by: Christoph Auer <cau@zurich.ibm.com>
Co-authored-by: ahn <ahn@sonny.zuvela.ibm.com>
Co-authored-by: ahn <ahn@zurich.ibm.com>
Co-authored-by: Christoph Auer <cau@zurich.ibm.com>
This commit is contained in:
Ahmed Nassar 2025-02-17 11:31:13 +01:00 committed by GitHub
parent 428b656793
commit 77eb77bdc2
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 73 additions and 19 deletions

View File

@ -1,11 +1,26 @@
import logging
import os
import re
import warnings
from enum import Enum
from pathlib import Path
from typing import Annotated, Any, Dict, List, Literal, Optional, Union
from pydantic import AnyUrl, BaseModel, ConfigDict, Field, model_validator
from pydantic_settings import BaseSettings, SettingsConfigDict
from pydantic import (
AnyUrl,
BaseModel,
ConfigDict,
Field,
field_validator,
model_validator,
validator,
)
from pydantic_settings import (
BaseSettings,
PydanticBaseSettingsSource,
SettingsConfigDict,
)
from typing_extensions import deprecated
_log = logging.getLogger(__name__)
@ -25,7 +40,18 @@ class AcceleratorOptions(BaseSettings):
)
num_threads: int = 4
device: AcceleratorDevice = AcceleratorDevice.AUTO
device: Union[str, AcceleratorDevice] = "auto"
@field_validator("device")
def validate_device(cls, value):
# "auto", "cpu", "cuda", "mps", or "cuda:N"
if value in {d.value for d in AcceleratorDevice} or re.match(
r"^cuda(:\d+)?$", value
):
return value
raise ValueError(
"Invalid device option. Use 'auto', 'cpu', 'mps', 'cuda', or 'cuda:N'."
)
@model_validator(mode="before")
@classmethod
@ -41,7 +67,6 @@ class AcceleratorOptions(BaseSettings):
"""
if isinstance(data, dict):
input_num_threads = data.get("num_threads")
# Check if to set the num_threads from the alternative envvar
if input_num_threads is None:
docling_num_threads = os.getenv("DOCLING_NUM_THREADS")

View File

@ -7,36 +7,62 @@ from docling.datamodel.pipeline_options import AcceleratorDevice
_log = logging.getLogger(__name__)
def decide_device(accelerator_device: AcceleratorDevice) -> str:
def decide_device(accelerator_device: str) -> str:
r"""
Resolve the device based on the acceleration options and the available devices in the system
Resolve the device based on the acceleration options and the available devices in the system.
Rules:
1. AUTO: Check for the best available device on the system.
2. User-defined: Check if the device actually exists, otherwise fall-back to CPU
"""
cuda_index = 0
device = "cpu"
has_cuda = torch.backends.cuda.is_built() and torch.cuda.is_available()
has_mps = torch.backends.mps.is_built() and torch.backends.mps.is_available()
if accelerator_device == AcceleratorDevice.AUTO:
if accelerator_device == AcceleratorDevice.AUTO.value: # Handle 'auto'
if has_cuda:
device = f"cuda:{cuda_index}"
device = "cuda:0"
elif has_mps:
device = "mps"
elif accelerator_device.startswith("cuda"):
if has_cuda:
# if cuda device index specified extract device id
parts = accelerator_device.split(":")
if len(parts) == 2 and parts[1].isdigit():
# select cuda device's id
cuda_index = int(parts[1])
if cuda_index < torch.cuda.device_count():
device = f"cuda:{cuda_index}"
else:
_log.warning(
"CUDA device 'cuda:%d' is not available. Fall back to 'CPU'.",
cuda_index,
)
elif len(parts) == 1: # just "cuda"
device = "cuda:0"
else:
_log.warning(
"Invalid CUDA device format '%s'. Fall back to 'CPU'",
accelerator_device,
)
else:
_log.warning("CUDA is not available in the system. Fall back to 'CPU'")
elif accelerator_device == AcceleratorDevice.MPS.value:
if has_mps:
device = "mps"
else:
_log.warning("MPS is not available in the system. Fall back to 'CPU'")
elif accelerator_device == AcceleratorDevice.CPU.value:
device = "cpu"
else:
if accelerator_device == AcceleratorDevice.CUDA:
if has_cuda:
device = f"cuda:{cuda_index}"
else:
_log.warning("CUDA is not available in the system. Fall back to 'CPU'")
elif accelerator_device == AcceleratorDevice.MPS:
if has_mps:
device = "mps"
else:
_log.warning("MPS is not available in the system. Fall back to 'CPU'")
_log.warning(
"Unknown device option '%s'. Fall back to 'CPU'", accelerator_device
)
_log.info("Accelerator device: '%s'", device)
return device

View File

@ -30,6 +30,9 @@ def main():
# num_threads=8, device=AcceleratorDevice.CUDA
# )
# easyocr doesnt support cuda:N allocation, defaults to cuda:0
# accelerator_options = AcceleratorOptions(num_threads=8, device="cuda:1")
pipeline_options = PdfPipelineOptions()
pipeline_options.accelerator_options = accelerator_options
pipeline_options.do_ocr = True