feat: Describe pictures using vision models (#259)
* draft for picture description models Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * vlm description using AutoModelForVision2Seq Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * add generation options Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * update vlm API Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * allow only localhost traffic Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * rename model Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * do not run with vlm api Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * more renaming Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * fix examples path Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * apply CLI download login Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * fix name of cli argument Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> * use with_smolvlm in models download Signed-off-by: Michele Dolfi <dol@zurich.ibm.com> --------- Signed-off-by: Michele Dolfi <dol@zurich.ibm.com>
This commit is contained in:
109
docling/models/picture_description_vlm_model.py
Normal file
109
docling/models/picture_description_vlm_model.py
Normal file
@@ -0,0 +1,109 @@
|
||||
from pathlib import Path
|
||||
from typing import Iterable, Optional, Union
|
||||
|
||||
from PIL import Image
|
||||
|
||||
from docling.datamodel.pipeline_options import (
|
||||
AcceleratorOptions,
|
||||
PictureDescriptionVlmOptions,
|
||||
)
|
||||
from docling.models.picture_description_base_model import PictureDescriptionBaseModel
|
||||
from docling.utils.accelerator_utils import decide_device
|
||||
|
||||
|
||||
class PictureDescriptionVlmModel(PictureDescriptionBaseModel):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
enabled: bool,
|
||||
artifacts_path: Optional[Union[Path, str]],
|
||||
options: PictureDescriptionVlmOptions,
|
||||
accelerator_options: AcceleratorOptions,
|
||||
):
|
||||
super().__init__(enabled=enabled, options=options)
|
||||
self.options: PictureDescriptionVlmOptions
|
||||
|
||||
if self.enabled:
|
||||
|
||||
if artifacts_path is None:
|
||||
artifacts_path = self.download_models(repo_id=self.options.repo_id)
|
||||
else:
|
||||
artifacts_path = Path(artifacts_path) / self.options.repo_cache_folder
|
||||
|
||||
self.device = decide_device(accelerator_options.device)
|
||||
|
||||
try:
|
||||
import torch
|
||||
from transformers import AutoModelForVision2Seq, AutoProcessor
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"transformers >=4.46 is not installed. Please install Docling with the required extras `pip install docling[vlm]`."
|
||||
)
|
||||
|
||||
# Initialize processor and model
|
||||
self.processor = AutoProcessor.from_pretrained(self.options.repo_id)
|
||||
self.model = AutoModelForVision2Seq.from_pretrained(
|
||||
self.options.repo_id,
|
||||
torch_dtype=torch.bfloat16,
|
||||
_attn_implementation=(
|
||||
"flash_attention_2" if self.device.startswith("cuda") else "eager"
|
||||
),
|
||||
).to(self.device)
|
||||
|
||||
self.provenance = f"{self.options.repo_id}"
|
||||
|
||||
@staticmethod
|
||||
def download_models(
|
||||
repo_id: str,
|
||||
local_dir: Optional[Path] = None,
|
||||
force: bool = False,
|
||||
progress: bool = False,
|
||||
) -> Path:
|
||||
from huggingface_hub import snapshot_download
|
||||
from huggingface_hub.utils import disable_progress_bars
|
||||
|
||||
if not progress:
|
||||
disable_progress_bars()
|
||||
download_path = snapshot_download(
|
||||
repo_id=repo_id,
|
||||
force_download=force,
|
||||
local_dir=local_dir,
|
||||
)
|
||||
|
||||
return Path(download_path)
|
||||
|
||||
def _annotate_images(self, images: Iterable[Image.Image]) -> Iterable[str]:
|
||||
from transformers import GenerationConfig
|
||||
|
||||
# Create input messages
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image"},
|
||||
{"type": "text", "text": self.options.prompt},
|
||||
],
|
||||
},
|
||||
]
|
||||
|
||||
# TODO: do batch generation
|
||||
|
||||
for image in images:
|
||||
# Prepare inputs
|
||||
prompt = self.processor.apply_chat_template(
|
||||
messages, add_generation_prompt=True
|
||||
)
|
||||
inputs = self.processor(text=prompt, images=[image], return_tensors="pt")
|
||||
inputs = inputs.to(self.device)
|
||||
|
||||
# Generate outputs
|
||||
generated_ids = self.model.generate(
|
||||
**inputs,
|
||||
generation_config=GenerationConfig(**self.options.generation_config),
|
||||
)
|
||||
generated_texts = self.processor.batch_decode(
|
||||
generated_ids[:, inputs["input_ids"].shape[1] :],
|
||||
skip_special_tokens=True,
|
||||
)
|
||||
|
||||
yield generated_texts[0].strip()
|
||||
Reference in New Issue
Block a user