feat: new torch-based docling models (#120)
--------- Signed-off-by: Maxim Lysak <mly@zurich.ibm.com> Co-authored-by: Maxim Lysak <mly@zurich.ibm.com>
This commit is contained in:
@@ -18,8 +18,6 @@ Accurate document layout analysis is a key requirement for highquality PDF docum
|
||||
|
||||
· Information systems → Document structure ; · Applied computing → Document analysis ; · Computing methodologies → Machine learning ; Computer vision ; Object detection ;
|
||||
|
||||
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).
|
||||
|
||||
KDD '22, August 14-18, 2022, Washington, DC, USA © 2022 Copyright held by the owner/author(s). ACM ISBN 978-1-4503-9385-0/22/08. https://doi.org/10.1145/3534678.3539043
|
||||
|
||||
Figure 1: Four examples of complex page layouts across different document categories
|
||||
@@ -31,8 +29,6 @@ PDF document conversion, layout segmentation, object-detection, data set, Machin
|
||||
|
||||
## ACM Reference Format:
|
||||
|
||||
Birgit Pfitzmann, Christoph Auer, Michele Dolfi, Ahmed S. Nassar, and Peter Staar. 2022. DocLayNet: A Large Human-Annotated Dataset for DocumentLayout Analysis. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '22), August 14-18, 2022, Washington, DC, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/ 3534678.3539043
|
||||
|
||||
## 1 INTRODUCTION
|
||||
|
||||
Despite the substantial improvements achieved with machine-learning (ML) approaches and deep neural networks in recent years, document conversion remains a challenging problem, as demonstrated by the numerous public competitions held on this topic [1-4]. The challenge originates from the huge variability in PDF documents regarding layout, language and formats (scanned, programmatic or a combination of both). Engineering a single ML model that can be applied on all types of documents and provides high-quality layout segmentation remains to this day extremely challenging [5]. To highlight the variability in document layouts, we show a few example documents from the DocLayNet dataset in Figure 1.
|
||||
@@ -90,22 +86,26 @@ Despite being cost-intense and far less scalable than automation, human annotati
|
||||
|
||||
The annotation campaign was carried out in four phases. In phase one, we identified and prepared the data sources for annotation. In phase two, we determined the class labels and how annotations should be done on the documents in order to obtain maximum consistency. The latter was guided by a detailed requirement analysis and exhaustive experiments. In phase three, we trained the annotation staff and performed exams for quality assurance. In phase four,
|
||||
|
||||
KDD '22, August 14-18, 2022, Washington, DC, USA Birgit Pfitzmann, Christoph Auer, Michele Dolfi, Ahmed S. Nassar, and Peter Staar
|
||||
|
||||
Table 1: DocLayNet dataset overview. Along with the frequency of each class label, we present the relative occurrence (as % of row "Total") in the train, test and validation sets. The inter-annotator agreement is computed as the mAP@0.5-0.95 metric between pairwise annotations from the triple-annotated pages, from which we obtain accuracy ranges.
|
||||
| | | % of Total | % of Total | % of Total | triple inter-annotator mAP @ 0.5-0.95 (%) | triple inter-annotator mAP @ 0.5-0.95 (%) | triple inter-annotator mAP @ 0.5-0.95 (%) | triple inter-annotator mAP @ 0.5-0.95 (%) | triple inter-annotator mAP @ 0.5-0.95 (%) | triple inter-annotator mAP @ 0.5-0.95 (%) | triple inter-annotator mAP @ 0.5-0.95 (%) |
|
||||
|----------------|---------|--------------|--------------|--------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|
|
||||
| class label | Count | Train | Test | Val | All | Fin | Man | Sci | Law | Pat | Ten |
|
||||
| Caption | 22524 | 2.04 | 1.77 | 2.32 | 84-89 | 40-61 | 86-92 | 94-99 | 95-99 | 69-78 | n/a |
|
||||
| Footnote | 6318 | 0.60 | 0.31 | 0.58 | 83-91 | n/a | 100 | 62-88 | 85-94 | n/a | 82-97 |
|
||||
| Formula | 25027 | 2.25 | 1.90 | 2.96 | 83-85 | n/a | n/a | 84-87 | 86-96 | n/a | n/a |
|
||||
| List-item | 185660 | 17.19 | 13.34 | 15.82 | 87-88 | 74-83 | 90-92 | 97-97 | 81-85 | 75-88 | 93-95 |
|
||||
| Page-footer | 70878 | 6.51 | 5.58 | 6.00 | 93-94 | 88-90 | 95-96 | 100 | 92-97 | 100 | 96-98 |
|
||||
| Page-header | 58022 | 5.10 | 6.70 | 5.06 | 85-89 | 66-76 | 90-94 | 98-100 | 91-92 | 97-99 | 81-86 |
|
||||
| Picture | 45976 | 4.21 | 2.78 | 5.31 | 69-71 | 56-59 | 82-86 | 69-82 | 80-95 | 66-71 | 59-76 |
|
||||
| Section-header | 142884 | 12.60 | 15.77 | 12.85 | 83-84 | 76-81 | 90-92 | 94-95 | 87-94 | 69-73 | 78-86 |
|
||||
| Table | 34733 | 3.20 | 2.27 | 3.60 | 77-81 | 75-80 | 83-86 | 98-99 | 58-80 | 79-84 | 70-85 |
|
||||
| Text | 510377 | 45.82 | 49.28 | 45.00 | 84-86 | 81-86 | 88-93 | 89-93 | 87-92 | 71-79 | 87-95 |
|
||||
| Title | 5071 | 0.47 | 0.30 | 0.50 | 60-72 | 24-63 | 50-63 | 94-100 | 82-96 | 68-79 | 24-56 |
|
||||
| Total | 1107470 | 941123 | 99816 | 66531 | 82-83 | 71-74 | 79-81 | 89-94 | 86-91 | 71-76 | 68-85 |
|
||||
| | | % of Total | % of Total | % of Total | % of Total | triple inter-annotator mAP @ 0.5-0.95 (%) | triple inter-annotator mAP @ 0.5-0.95 (%) | triple inter-annotator mAP @ 0.5-0.95 (%) | triple inter-annotator mAP @ 0.5-0.95 (%) | triple inter-annotator mAP @ 0.5-0.95 (%) | triple inter-annotator mAP @ 0.5-0.95 (%) |
|
||||
|----------------|---------|--------------|--------------|--------------|--------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|
|
||||
| class label | Count | Train | Test | Val | All | Fin | Man | Sci | Law | Pat | Ten |
|
||||
| Caption | 22524 | 2.04 | 1.77 | 2.32 | 84-89 | 40-61 | 86-92 | 94-99 | 95-99 | 69-78 | n/a |
|
||||
| Footnote | 6318 | 0.60 | 0.31 | 0.58 | 83-91 | n/a | 100 | 62-88 | 85-94 | n/a | 82-97 |
|
||||
| Formula | 25027 | 2.25 | 1.90 | 2.96 | 83-85 | n/a | n/a | 84-87 | 86-96 | n/a | n/a |
|
||||
| List-item | 185660 | 17.19 | 13.34 | 15.82 | 87-88 | 74-83 | 90-92 | 97-97 | 81-85 | 75-88 | 93-95 |
|
||||
| Page-footer | 70878 | 6.51 | 5.58 | 6.00 | 93-94 | 88-90 | 95-96 | 100 | 92-97 | 100 | 96-98 |
|
||||
| Page-header | 58022 | 5.10 | 6.70 | 5.06 | 85-89 | 66-76 | 90-94 | 98-100 | 91-92 | 97-99 | 81-86 |
|
||||
| Picture | 45976 | 4.21 | 2.78 | 5.31 | 69-71 | 56-59 | 82-86 | 69-82 | 80-95 | 66-71 | 59-76 |
|
||||
| Section-header | 142884 | 12.60 | 15.77 | 12.85 | 83-84 | 76-81 | 90-92 | 94-95 | 87-94 | 69-73 | 78-86 |
|
||||
| Table | 34733 | 3.20 | 2.27 | 3.60 | 77-81 | 75-80 | 83-86 | 98-99 | 58-80 | 79-84 | 70-85 |
|
||||
| Text | 510377 | 45.82 | 49.28 | 45.00 | 84-86 | 81-86 | 88-93 | 89-93 | 87-92 | 71-79 | 87-95 |
|
||||
| Title | 5071 | 0.47 | 0.30 | 0.50 | 60-72 | 24-63 | 50-63 | 94-100 | 82-96 | 68-79 | 24-56 |
|
||||
| Total | 1107470 | 941123 | 99816 | 66531 | 82-83 | 71-74 | 79-81 | 89-94 | 86-91 | 71-76 | 68-85 |
|
||||
|
||||
Figure 3: Corpus Conversion Service annotation user interface. The PDF page is shown in the background, with overlaid text-cells (in darker shades). The annotation boxes can be drawn by dragging a rectangle over each segment with the respective label from the palette on the right.
|
||||
|
||||
Figure 3: Corpus Conversion Service annotation user interface. The PDF page is shown in the background, with overlaid text-cells (in darker shades). The annotation boxes can be drawn by dragging a rectangle over each segment with the respective label from the palette on the right.
|
||||
<!-- image -->
|
||||
@@ -120,6 +120,8 @@ Preparation work included uploading and parsing the sourced PDF documents in the
|
||||
|
||||
Phase 2: Label selection and guideline. We reviewed the collected documents and identified the most common structural features they exhibit. This was achieved by identifying recurrent layout elements and lead us to the definition of 11 distinct class labels. These 11 class labels are Caption , Footnote , Formula , List-item , Pagefooter , Page-header , Picture , Section-header , Table , Text , and Title . Critical factors that were considered for the choice of these class labels were (1) the overall occurrence of the label, (2) the specificity of the label, (3) recognisability on a single page (i.e. no need for context from previous or next page) and (4) overall coverage of the page. Specificity ensures that the choice of label is not ambiguous, while coverage ensures that all meaningful items on a page can be annotated. We refrained from class labels that are very specific to a document category, such as Abstract in the Scientific Articles category. We also avoided class labels that are tightly linked to the semantics of the text. Labels such as Author and Affiliation , as seen in DocBank, are often only distinguishable by discriminating on
|
||||
|
||||
DocLayNet: A Large Human-Annotated Dataset for Document-Layout Analysis
|
||||
|
||||
the textual content of an element, which goes beyond visual layout recognition, in particular outside the Scientific Articles category.
|
||||
|
||||
At first sight, the task of visual document-layout interpretation appears intuitive enough to obtain plausible annotations in most cases. However, during early trial-runs in the core team, we observed many cases in which annotators use different annotation styles, especially for documents with challenging layouts. For example, if a figure is presented with subfigures, one annotator might draw a single figure bounding-box, while another might annotate each subfigure separately. The same applies for lists, where one might annotate all list items in one block or each list item separately. In essence, we observed that challenging layouts would be annotated in different but plausible ways. To illustrate this, we show in Figure 4 multiple examples of plausible but inconsistent annotations on the same pages.
|
||||
@@ -186,6 +188,10 @@ In this section, we will present several aspects related to the performance of o
|
||||
In Table 2, we present baseline experiments (given in mAP) on Mask R-CNN [12], Faster R-CNN [11], and YOLOv5 [13]. Both training and evaluation were performed on RGB images with dimensions of 1025 × 1025 pixels. For training, we only used one annotation in case of redundantly annotated pages. As one can observe, the variation in mAP between the models is rather low, but overall between 6 and 10% lower than the mAP computed from the pairwise human annotations on triple-annotated pages. This gives a good indication that the DocLayNet dataset poses a worthwhile challenge for the research community to close the gap between human recognition and ML approaches. It is interesting to see that Mask R-CNN and Faster R-CNN produce very comparable mAP scores, indicating that pixel-based image segmentation derived from bounding-boxes does not help to obtain better predictions. On the other hand, the more recent Yolov5x model does very well and even out-performs humans on selected labels such as Text , Table and Picture . This is not entirely surprising, as Text , Table and Picture are abundant and the most visually distinctive in a document.
|
||||
|
||||
Table 3: Performance of a Mask R-CNN R50 network in mAP@0.5-0.95 scores trained on DocLayNet with different class label sets. The reduced label sets were obtained by either down-mapping or dropping labels.
|
||||
|
||||
Table 4: Performance of a Mask R-CNN R50 network with document-wise and page-wise split for different label sets. Naive page-wise split will result in GLYPH<tildelow> 10% point improvement.
|
||||
|
||||
Table 4: Performance of a Mask R-CNN R50 network with document-wise and page-wise split for different label sets. Naive page-wise split will result in GLYPH<tildelow> 10% point improvement.
|
||||
| Class-count | 11 | 6 | 5 | 4 |
|
||||
|----------------|------|---------|---------|---------|
|
||||
| Caption | 68 | Text | Text | Text |
|
||||
@@ -209,7 +215,7 @@ One of the fundamental questions related to any dataset is if it is "large enoug
|
||||
|
||||
The choice and number of labels can have a significant effect on the overall model performance. Since PubLayNet, DocBank and DocLayNet all have different label sets, it is of particular interest to understand and quantify this influence of the label set on the model performance. We investigate this by either down-mapping labels into more common ones (e.g. Caption → Text ) or excluding them from the annotations entirely. Furthermore, it must be stressed that all mappings and exclusions were performed on the data before model training. In Table 3, we present the mAP scores for a Mask R-CNN R50 network on different label sets. Where a label is down-mapped, we show its corresponding label, otherwise it was excluded. We present three different label sets, with 6, 5 and 4 different labels respectively. The set of 5 labels contains the same labels as PubLayNet. However, due to the different definition of
|
||||
|
||||
Table 4: Performance of a Mask R-CNN R50 network with document-wise and page-wise split for different label sets. Naive page-wise split will result in GLYPH<tildelow> 10% point improvement.
|
||||
|
||||
| Class-count | 11 | 11 | 5 | 5 |
|
||||
|----------------|------|------|-----|------|
|
||||
| Split | Doc | Page | Doc | Page |
|
||||
@@ -236,25 +242,27 @@ Many documents in DocLayNet have a unique styling. In order to avoid overfitting
|
||||
|
||||
Throughout this paper, we claim that DocLayNet's wider variety of document layouts leads to more robust layout detection models. In Table 5, we provide evidence for that. We trained models on each of the available datasets (PubLayNet, DocBank and DocLayNet) and evaluated them on the test sets of the other datasets. Due to the different label sets and annotation styles, a direct comparison is not possible. Hence, we focussed on the common labels among the datasets. Between PubLayNet and DocLayNet, these are Picture ,
|
||||
|
||||
KDD '22, August 14-18, 2022, Washington, DC, USA Birgit Pfitzmann, Christoph Auer, Michele Dolfi, Ahmed S. Nassar, and Peter Staar
|
||||
|
||||
Table 5: Prediction Performance (mAP@0.5-0.95) of a Mask R-CNN R50 network across the PubLayNet, DocBank & DocLayNet data-sets. By evaluating on common label classes of each dataset, we observe that the DocLayNet-trained model has much less pronounced variations in performance across all datasets.
|
||||
|
||||
Table 5: Prediction Performance (mAP@0.5-0.95) of a Mask R-CNN R50 network across the PubLayNet, DocBank & DocLayNet data-sets. By evaluating on common label classes of each dataset, we observe that the DocLayNet-trained model has much less pronounced variations in performance across all datasets.
|
||||
| | Testing on | Testing on | Testing on |
|
||||
|------------|--------------|--------------|--------------|
|
||||
| labels | PLN | DB | DLN |
|
||||
| Figure | 96 | 43 | 23 |
|
||||
| Sec-header | 87 | - | 32 |
|
||||
| Table | 95 | 24 | 49 |
|
||||
| Text | 96 | - | 42 |
|
||||
| total | 93 | 34 | 30 |
|
||||
| Figure | 77 | 71 | 31 |
|
||||
| Table | 19 | 65 | 22 |
|
||||
| total | 48 | 68 | 27 |
|
||||
| Figure | 67 | 51 | 72 |
|
||||
| Sec-header | 53 | - | 68 |
|
||||
| Table | 87 | 43 | 82 |
|
||||
| Text | 77 | - | 84 |
|
||||
| total | 59 | 47 | 78 |
|
||||
| | | Testing on | Testing on | Testing on |
|
||||
|-----------------|------------|--------------|--------------|--------------|
|
||||
| Training on | labels | PLN | DB | DLN |
|
||||
| PubLayNet (PLN) | Figure | 96 | 43 | 23 |
|
||||
| PubLayNet (PLN) | Sec-header | 87 | - | 32 |
|
||||
| PubLayNet (PLN) | Table | 95 | 24 | 49 |
|
||||
| PubLayNet (PLN) | Text | 96 | - | 42 |
|
||||
| PubLayNet (PLN) | total | 93 | 34 | 30 |
|
||||
| DocBank (DB) | Figure | 77 | 71 | 31 |
|
||||
| DocBank (DB) | Table | 19 | 65 | 22 |
|
||||
| DocBank (DB) | total | 48 | 68 | 27 |
|
||||
| DocLayNet (DLN) | Figure | 67 | 51 | 72 |
|
||||
| DocLayNet (DLN) | Sec-header | 53 | - | 68 |
|
||||
| DocLayNet (DLN) | Table | 87 | 43 | 82 |
|
||||
| DocLayNet (DLN) | Text | 77 | - | 84 |
|
||||
| DocLayNet (DLN) | total | 59 | 47 | 78 |
|
||||
|
||||
Section-header , Table and Text . Before training, we either mapped or excluded DocLayNet's other labels as specified in table 3, and also PubLayNet's List to Text . Note that the different clustering of lists (by list-element vs. whole list objects) naturally decreases the mAP score for Text .
|
||||
|
||||
@@ -300,9 +308,15 @@ To date, there is still a significant gap between human and ML accuracy on the l
|
||||
|
||||
[13] Glenn Jocher, Alex Stoken, Ayush Chaurasia, Jirka Borovec, NanoCode012, TaoXie, Yonghye Kwon, Kalen Michael, Liu Changyu, Jiacong Fang, Abhiram V, Laughing, tkianai, yxNONG, Piotr Skalski, Adam Hogan, Jebastin Nadar, imyhxy, Lorenzo Mammana, Alex Wang, Cristi Fati, Diego Montes, Jan Hajek, Laurentiu
|
||||
|
||||
Figure 6: Example layout predictions on selected pages from the DocLayNet test-set. (A, D) exhibit favourable results on coloured backgrounds. (B, C) show accurate list-item and paragraph differentiation despite densely-spaced lines. (E) demonstrates good table and figure distinction. (F) shows predictions on a Chinese patent with multiple overlaps, label confusion and missing boxes.
|
||||
DocLayNet: A Large Human-Annotated Dataset for Document-Layout Analysis
|
||||
|
||||
KDD '22, August 14-18, 2022, Washington, DC, USA
|
||||
|
||||
Text Caption List-Item Formula Table Section-Header Picture Page-Header Page-Footer Title
|
||||
<!-- image -->
|
||||
|
||||
Figure 6: Example layout predictions on selected pages from the DocLayNet test-set. (A, D) exhibit favourable results on coloured backgrounds. (B, C) show accurate list-item and paragraph differentiation despite densely-spaced lines. (E) demonstrates good table and figure distinction. (F) shows predictions on a Chinese patent with multiple overlaps, label confusion and missing boxes.
|
||||
|
||||
Diaconu, Mai Thanh Minh, Marc, albinxavi, fatih, oleg, and wanghao yang. ultralytics/yolov5: v6.0 - yolov5n nano models, roboflow integration, tensorflow export, opencv dnn support, October 2021.
|
||||
|
||||
[14] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-end object detection with transformers. CoRR , abs/2005.12872, 2020.
|
||||
|
||||
Reference in New Issue
Block a user