feat(SmolDocling): Support MLX acceleration in VLM pipeline (#1199)
* Initial implementation to support MLX for VLM pipeline and SmolDocling Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * mlx_model unit Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * Add CLI choices for VLM pipeline and model Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Initial implementation to support MLX for VLM pipeline and SmolDocling Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * mlx_model unit Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * Add CLI choices for VLM pipeline and model Signed-off-by: Christoph Auer <cau@zurich.ibm.com> * Updated minimal vlm pipeline example Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * make vlm_pipeline python3.9 compatible Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * Fixed extract_text_from_backend definition Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * Updated README Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * Updated example Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * Updated documentation Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * corrections in the documentation Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> * Consmetic changes Signed-off-by: Christoph Auer <cau@zurich.ibm.com> --------- Signed-off-by: Maksym Lysak <mly@zurich.ibm.com> Signed-off-by: Christoph Auer <cau@zurich.ibm.com> Co-authored-by: Maksym Lysak <mly@zurich.ibm.com> Co-authored-by: Christoph Auer <cau@zurich.ibm.com>
This commit is contained in:
@@ -32,13 +32,21 @@ from docling.datamodel.pipeline_options import (
|
||||
AcceleratorOptions,
|
||||
EasyOcrOptions,
|
||||
OcrOptions,
|
||||
PaginatedPipelineOptions,
|
||||
PdfBackend,
|
||||
PdfPipeline,
|
||||
PdfPipelineOptions,
|
||||
TableFormerMode,
|
||||
VlmModelType,
|
||||
VlmPipelineOptions,
|
||||
granite_vision_vlm_conversion_options,
|
||||
smoldocling_vlm_conversion_options,
|
||||
smoldocling_vlm_mlx_conversion_options,
|
||||
)
|
||||
from docling.datamodel.settings import settings
|
||||
from docling.document_converter import DocumentConverter, FormatOption, PdfFormatOption
|
||||
from docling.models.factories import get_ocr_factory
|
||||
from docling.pipeline.vlm_pipeline import VlmPipeline
|
||||
|
||||
warnings.filterwarnings(action="ignore", category=UserWarning, module="pydantic|torch")
|
||||
warnings.filterwarnings(action="ignore", category=FutureWarning, module="easyocr")
|
||||
@@ -200,6 +208,14 @@ def convert(
|
||||
help="Image export mode for the document (only in case of JSON, Markdown or HTML). With `placeholder`, only the position of the image is marked in the output. In `embedded` mode, the image is embedded as base64 encoded string. In `referenced` mode, the image is exported in PNG format and referenced from the main exported document.",
|
||||
),
|
||||
] = ImageRefMode.EMBEDDED,
|
||||
pipeline: Annotated[
|
||||
PdfPipeline,
|
||||
typer.Option(..., help="Choose the pipeline to process PDF or image files."),
|
||||
] = PdfPipeline.STANDARD,
|
||||
vlm_model: Annotated[
|
||||
VlmModelType,
|
||||
typer.Option(..., help="Choose the VLM model to use with PDF or image files."),
|
||||
] = VlmModelType.SMOLDOCLING,
|
||||
ocr: Annotated[
|
||||
bool,
|
||||
typer.Option(
|
||||
@@ -420,50 +436,77 @@ def convert(
|
||||
ocr_options.lang = ocr_lang_list
|
||||
|
||||
accelerator_options = AcceleratorOptions(num_threads=num_threads, device=device)
|
||||
pipeline_options = PdfPipelineOptions(
|
||||
allow_external_plugins=allow_external_plugins,
|
||||
enable_remote_services=enable_remote_services,
|
||||
accelerator_options=accelerator_options,
|
||||
do_ocr=ocr,
|
||||
ocr_options=ocr_options,
|
||||
do_table_structure=True,
|
||||
do_code_enrichment=enrich_code,
|
||||
do_formula_enrichment=enrich_formula,
|
||||
do_picture_description=enrich_picture_description,
|
||||
do_picture_classification=enrich_picture_classes,
|
||||
document_timeout=document_timeout,
|
||||
)
|
||||
pipeline_options.table_structure_options.do_cell_matching = (
|
||||
True # do_cell_matching
|
||||
)
|
||||
pipeline_options.table_structure_options.mode = table_mode
|
||||
pipeline_options: PaginatedPipelineOptions
|
||||
|
||||
if image_export_mode != ImageRefMode.PLACEHOLDER:
|
||||
pipeline_options.generate_page_images = True
|
||||
pipeline_options.generate_picture_images = (
|
||||
True # FIXME: to be deprecated in verson 3
|
||||
if pipeline == PdfPipeline.STANDARD:
|
||||
pipeline_options = PdfPipelineOptions(
|
||||
allow_external_plugins=allow_external_plugins,
|
||||
enable_remote_services=enable_remote_services,
|
||||
accelerator_options=accelerator_options,
|
||||
do_ocr=ocr,
|
||||
ocr_options=ocr_options,
|
||||
do_table_structure=True,
|
||||
do_code_enrichment=enrich_code,
|
||||
do_formula_enrichment=enrich_formula,
|
||||
do_picture_description=enrich_picture_description,
|
||||
do_picture_classification=enrich_picture_classes,
|
||||
document_timeout=document_timeout,
|
||||
)
|
||||
pipeline_options.table_structure_options.do_cell_matching = (
|
||||
True # do_cell_matching
|
||||
)
|
||||
pipeline_options.table_structure_options.mode = table_mode
|
||||
|
||||
if image_export_mode != ImageRefMode.PLACEHOLDER:
|
||||
pipeline_options.generate_page_images = True
|
||||
pipeline_options.generate_picture_images = (
|
||||
True # FIXME: to be deprecated in verson 3
|
||||
)
|
||||
pipeline_options.images_scale = 2
|
||||
|
||||
backend: Type[PdfDocumentBackend]
|
||||
if pdf_backend == PdfBackend.DLPARSE_V1:
|
||||
backend = DoclingParseDocumentBackend
|
||||
elif pdf_backend == PdfBackend.DLPARSE_V2:
|
||||
backend = DoclingParseV2DocumentBackend
|
||||
elif pdf_backend == PdfBackend.DLPARSE_V4:
|
||||
backend = DoclingParseV4DocumentBackend # type: ignore
|
||||
elif pdf_backend == PdfBackend.PYPDFIUM2:
|
||||
backend = PyPdfiumDocumentBackend # type: ignore
|
||||
else:
|
||||
raise RuntimeError(f"Unexpected PDF backend type {pdf_backend}")
|
||||
|
||||
pdf_format_option = PdfFormatOption(
|
||||
pipeline_options=pipeline_options,
|
||||
backend=backend, # pdf_backend
|
||||
)
|
||||
elif pipeline == PdfPipeline.VLM:
|
||||
pipeline_options = VlmPipelineOptions()
|
||||
|
||||
if vlm_model == VlmModelType.GRANITE_VISION:
|
||||
pipeline_options.vlm_options = granite_vision_vlm_conversion_options
|
||||
elif vlm_model == VlmModelType.SMOLDOCLING:
|
||||
pipeline_options.vlm_options = smoldocling_vlm_conversion_options
|
||||
if sys.platform == "darwin":
|
||||
try:
|
||||
import mlx_vlm
|
||||
|
||||
pipeline_options.vlm_options = (
|
||||
smoldocling_vlm_mlx_conversion_options
|
||||
)
|
||||
except ImportError:
|
||||
_log.warning(
|
||||
"To run SmolDocling faster, please install mlx-vlm:\n"
|
||||
"pip install mlx-vlm"
|
||||
)
|
||||
|
||||
pdf_format_option = PdfFormatOption(
|
||||
pipeline_cls=VlmPipeline, pipeline_options=pipeline_options
|
||||
)
|
||||
pipeline_options.images_scale = 2
|
||||
|
||||
if artifacts_path is not None:
|
||||
pipeline_options.artifacts_path = artifacts_path
|
||||
|
||||
backend: Type[PdfDocumentBackend]
|
||||
if pdf_backend == PdfBackend.DLPARSE_V1:
|
||||
backend = DoclingParseDocumentBackend
|
||||
elif pdf_backend == PdfBackend.DLPARSE_V2:
|
||||
backend = DoclingParseV2DocumentBackend
|
||||
elif pdf_backend == PdfBackend.DLPARSE_V4:
|
||||
backend = DoclingParseV4DocumentBackend # type: ignore
|
||||
elif pdf_backend == PdfBackend.PYPDFIUM2:
|
||||
backend = PyPdfiumDocumentBackend # type: ignore
|
||||
else:
|
||||
raise RuntimeError(f"Unexpected PDF backend type {pdf_backend}")
|
||||
|
||||
pdf_format_option = PdfFormatOption(
|
||||
pipeline_options=pipeline_options,
|
||||
backend=backend, # pdf_backend
|
||||
)
|
||||
format_options: Dict[InputFormat, FormatOption] = {
|
||||
InputFormat.PDF: pdf_format_option,
|
||||
InputFormat.IMAGE: pdf_format_option,
|
||||
|
||||
Reference in New Issue
Block a user